Promise and Challenges of High-Voltage SiC Bipolar Power Devices
Abstract
:1. Introduction
2. Results
2.1. Simulation of Forward Characteristics of Ultrahigh-Voltage SiC Pin Diodes
2.2. Characteristics of Ultrahigh-Voltage SiC Merged Pin-Schottky (MPS) Diodes
3. Discussion
3.1. Limitation of Ultrahigh-Voltage SiC Bipolar Devices
3.2. Comparison of SiC MPS Diodes Formed by Epitaxial Growth and Ion Implantation
4. Materials and Methods
5. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Bhatnagar, M.; Baliga, B.J. Comparison of 6H-SiC, 3C-SiC, and Si for power devices. IEEE Trans. Electron Devices 1993, 40, 645–655. [Google Scholar] [CrossRef]
- Cooper, J.A.; Agarwal, A. SiC power-switching devices-the second electronics revolution? Proc. IEEE 2002, 90, 956–968. [Google Scholar] [CrossRef]
- Friedrichs, P.; Kimoto, T.; Ley, L.; Pensl, G. Volume 2: Power Devices and Sensors. In Silicon Carbide; Wiley-VCH Verlag: Weinheim, Germany, 2010. [Google Scholar]
- Kimoto, T.; Cooper, J.A. Fundamentals of Silicon Carbide Technology; John Wiley & Sons: Singapore, 2014. [Google Scholar]
- Kimoto, T. Material science and device physics in SiC technology for high-voltage power devices. Jpn. J. Appl. Phys. 2015, 54, 040103. [Google Scholar] [CrossRef]
- Imaizumi, M.; Miura, N. Characteristics of 600, 1200, and 3300 V planar SiC-MOSFETs for energy conversion applications. IEEE Trans. Electron Devices 2015, 62, 390–395. [Google Scholar] [CrossRef]
- Harada, S.; Kobayashi, Y.; Ariyoshi, K.; Kojima, T.; Senzaki, J.; Tanaka, Y.; Okumura, H. 3.3-kV-class 4H-SiC MeV-implanted UMOSFET with reduced gate oxide field. IEEE Electron Device Lett. 2016, 37, 314–316. [Google Scholar] [CrossRef]
- Palmour, J.W. Silicon carbide power device development for industrial markets. In Proceedings of the 2014 IEEE International Electron Devices Meeting, San Francisco, CA, USA, 15–17 December 2014.
- Kaji, N.; Suda, J.; Kimoto, T. Temperature dependence of forward characteristics for ultrahigh-voltage SiC p-i-n diodes with a long carrier lifetime. Jpn. J. Appl. Phys. 2015, 54, 098004. [Google Scholar] [CrossRef]
- Morisette, D.T.; Cooper, J.A. Theoretical comparison of SiC PiN and Schottky diodes based on power dissipation considerations. IEEE Trans. Electron Devices 2002, 49, 1657–1664. [Google Scholar] [CrossRef]
- Sugawara, Y.; Takayama, D.; Asano, K.; Singh, R.; Palmour, J.; Hayashi, T. 12–19 kV 4H-SiC pin diodes with low power loss. In Proceedings of the 2001 International Symposium Power Semiconductor Devices and IC’s, Osaka, Japan, 4–7 June 2001; pp. 27–30.
- Cheng, L.; Palmour, J.W.; Agarwal, A.K.; Allen, S.T.; Brunt, E.V.; Wang, G.Y.; Pala, V.; Sung, W.J.; Huang, A.Q.; O’Loughlin, M.J.; et al. Strategic overview of high-voltage SiC power device development aiming at global energy savings. Mater. Sci. Forum 2014, 778–780, 1089–1095. [Google Scholar] [CrossRef]
- Kaji, N.; Niwa, H.; Suda, J.; Kimoto, T. Ultrahigh-voltage SiC p-i-n diodes with improved forward characteristics. IEEE Trans. Electron Devices 2015, 62, 374–381. [Google Scholar] [CrossRef]
- Zhang, Q.J.; Agarwal, A.; Capell, C.; Cheng, L.; O’Loughlin, M.; Burk, A.; Palmour, J.W.; Rumyantsev, S.; Saxena, T.; Levinshtein, M.; et al. 12 kV, 1 cm2 SiC gate turn-off thyristors with negative bevel termination. Mater. Sci. Forum 2012, 717–720, 1151–1154. [Google Scholar] [CrossRef]
- Miyake, H.; Okuda, T.; Niwa, H.; Kimoto, T.; Suda, J. 21-kV SiC BJTs with space-modulated junction termination extension. IEEE Electron Device Lett. 2012, 33, 1598–1600. [Google Scholar] [CrossRef]
- Ryu, S.H.; Cheng, L.; Dhar, S.; Capell, C.; Jonas, C.; Clayton, J.; Donofrio, M.; O’Loughlin, M.; Burk, A.; Agarwal, A.; et al. Development of 15 kV 4H-SiC IGBTs. Mater. Sci. Forum 2012, 717–720, 1135–1138. [Google Scholar] [CrossRef]
- Brunt, E.V.; Cheng, L.; O’Loughlin, M.; Capell, C.; Jonas, C.; Lam, K.; Richmond, J.; Pala, V.; Ryu, S.; Allen, S.T.; et al. 22 kV, 1 cm2, 4H-SiC n-IGBTs with improved conductivity modulation. In Proceedings of the 2014 International Symposium on Power Semiconductor Devices & IC’s, Waikoloa, HI, USA, 15–19 June 2014; pp. 358–361.
- Fukuda, K.; Okamoto, D.; Okamoto, M.; Deguchi, T.; Mizushima, T.; Takenaka, K.; Fujisawa, S.; Harada, S.; Tanaka, Y.; Yonezawa, Y.; et al. Development of ultrahigh-voltage SiC devices. IEEE Trans. Electron Devices 2015, 62, 396–404. [Google Scholar] [CrossRef]
- Yang, L.; Zhao, T.; Wang, J.; Huang, A. Design and analysis of a 270 kW five-level DC/DC converter for solid state transformer using 10 kV SiC power devices. In Proceedings of the IEEE Power Electronics Specialists Conference, Orlando, FL, USA, 17–21 June 2007; pp. 245–251.
- Wang, J.; Zhou, X.; Li, J.; Zhao, T.; Huang, A.Q.; Callanan, R.; Husna, F.; Agarwal, A. 10 kV SiC MOSFET-based boost converter. IEEE Trans. Ind. Appl. 2009, 45, 2056–2063. [Google Scholar] [CrossRef]
- Patel, D.C.; Kadavelugu, A.; Madhusoodhanan, S.; Bhattacharya, S.; Hatua, K.; Leslie, S.; Ryu, S.-H.; Grinder, D.; Agarwal, A. 15 kV SiC IGBT based three-phase three-level modular-leg power converter. In Proceedings of the IEEE Energy Conversion Congress and Exposition (ECCE), Denver, CO, USA, 15–19 September 2013; pp. 3291–3298.
- Madhusoodhanan, S.; Tripathi, A.; Patel, D.; Mainali, K.; Kadavelugu, A.; Hazra, S.; Bhattacharya, S.; Hatua, K. Solid-state transformer and MV grid tie applications enabled by 15 kV SiC IGBTs and 10 kV SiC MOSFETs based multilevel converters. IEEE Trans. Ind. Appl. 2015, 51, 3343–3360. [Google Scholar] [CrossRef]
- Bergman, P.; Lendenmann, H.; Nilsson, P.Å.; Lindefelt, U.; Skytt, P. Crystal defects as source of anomalous forward voltage increase of 4H-SiC diodes. Mater. Sci. Forum 2001, 353–356, 299–302. [Google Scholar] [CrossRef]
- Skowronski, M.; Ha, S. Degradation of hexagonal silicon-carbide-based bipolar devices. J. Appl. Phys. 2006. [Google Scholar] [CrossRef]
- Hayashi, T.; Izumi, T.; Hemmi, T.; Asano, K. Insulating properties of package for ultrahigh-voltage, high-temperature devices. Mater. Sci. Forum 2013, 740–742, 1036–1039. [Google Scholar] [CrossRef]
- Schirmer, K.C.; Rowden, B.; Mantooth, H.A.; Ang, S.S.; Balda, J.C. Packaging and Modeling of SiC Power Modules. ECS Trans. 2011, 41, 183–188. [Google Scholar]
- Persson, C.; Lindefelt, U.; Sernelius, B.E. Band gap narrowing in n-type and p-type 3C-, 2H-, 4H-, 6H-SiC, and Si. J. Appl. Phys. 1999, 86, 4419–4427. [Google Scholar] [CrossRef]
- Luts, J.; Schlangenotto, H.; Scheuermann, U.; Doncker, R.D. Semiconductor Power Devices; Springer: Berlin/Heidelberg, Germany, 2011. [Google Scholar]
- Storasta, L.; Tsuchida, H. Reduction of traps and improvement of carrier lifetime in 4H-SiC epilayers by ion implantation. Appl. Phys. Lett. 2007, 90, 062116. [Google Scholar] [CrossRef]
- Hiyoshi, T.; Kimoto, T. Reduction of deep levels and improvement of carrier lifetime in n-type 4H-SiC by thermal oxidation. Appl. Phys. Express 2009, 2, 041101. [Google Scholar] [CrossRef]
- Miyazawa, T.; Ito, M.; Tsuchida, H. Evaluation of long carrier lifetimes in thick 4H silicon carbide epitaxial layers. Appl. Phys. Lett. 2010, 97, 202106. [Google Scholar] [CrossRef]
- Ichikawa, S.; Kawahara, K.; Suda, J.; Kimoto, T. Carrier recombination in n-type 4H-SiC epilayers with long carrier lifetimes. Appl. Phys. Express 2012, 5, 101301. [Google Scholar] [CrossRef]
- Singh, R.; Irvine, H.G.; Capell, D.C.; Richmond, J.T.; Berning, D.; Hefner, A.R.; Palmour, J.W. Large area, ultra-high voltage 4H-SiC p-i-n rectifiers. IEEE Trans. Electron Devices 2002, 49, 2308–2316. [Google Scholar] [CrossRef]
- Bhalla, A.; Chow, T.P. Bipolar power device performance: Dependence on materials, lifetime and device ratings. In Proceedings of the 6th International Symposium Power Semiconductor Devices and IC’s, Davos, Switzerland, 31 May–2 June 1994; pp. 287–292.
- Baliga, B.J. Fundamentals of Power Semiconductor Devices; Springer: Berlin, Germany, 2008. [Google Scholar]
- Peters, D.; Friedrichs, P.; Schörner, R.; Stephani, D. Comparison of 4H-SiC pn, pinch and Schottky diodes for the 3 kV range. Mater. Sci. Forum 2002, 389–393, 1125–1128. [Google Scholar] [CrossRef]
- Rupp, R.; Treu, M.; Voss, S.; Björk, F.; Reimann, T. 2nd generation SiC Schottky diodes: A new benchmark in SiC device ruggedness. In Proceedings of the 2006 International Symposium Power Semiconductor Devices and IC’s, Naples, Italy, 4–8 June 2006; pp. 269–272.
- Itoh, A.; Kimoto, T.; Matsunami, H. High performance of high-voltage 4H-SiC Schottky barrier diodes. IEEE Electron Device Lett. 1995, 16, 280–282. [Google Scholar] [CrossRef]
- Schroder, D.K. Semiconductor Material and Device Characterization, 3rd ed.; Wiley-IEEE: New York, NY, USA, 2006. [Google Scholar]
- Galeckas, A.; Linnros, J.; Grivickas, V.; Lindefelt, U.; Hallin, C. Auger recombination in 4H-SiC: Unusual temperature behavior. Appl. Phys. Lett. 1997, 71, 3269–3271. [Google Scholar] [CrossRef]
- Kawahara, K.; Alfieri, G.; Kimoto, T. Detection and depth analyses of deep levels generated by ion implantation in n- and p-type 4H-SiC. J. Appl. Phys. 2009, 106, 013719. [Google Scholar] [CrossRef] [Green Version]
- Lendenmann, H.; Mukhitdinov, A.; Dahlquist, F.; Bleichner, H.; Irwin, M.; Söderholm, R.; Skytt, P. 4.5 kV 4H-SiC diodes with ideal forward characteristic. In Proceedings of the 2001 International Symposium Power Semiconductor Devices and IC’s, Osaka, Japan, 4–7 June 2001; pp. 31–34.
- Synopsys Website: Tools. Available online: https://www.synopsys.com/Tools/silicon/tcad/device-simulation/Pages/ (accessed on 1 November 2016).
- Niwa, H.; Suda, J.; Kimoto, T. Impact ionization coefficients in 4H-SiC toward ultrahigh-voltage power devices. IEEE Trans. Electron Devices 2015, 62, 3326–3333. [Google Scholar] [CrossRef]
- Hiyoshi, T.; Hori, T.; Suda, J.; Kimoto, T. Simulation and experimental study on the junction termination structure for high-voltage 4H-SiC PiN diodes. IEEE Trans. Electron Devices 2008, 55, 1841–1846. [Google Scholar] [CrossRef] [Green Version]
- Negoro, Y.; Katsumoto, K.; Kimoto, T.; Matsunami, H. Electronic behaviors of high-dose phosphorus-ion implanted 4H-SiC (0001). J. Appl. Phys. 2004, 96, 224–228. [Google Scholar] [CrossRef] [Green Version]
- Niwa, H.; Suda, J.; Kimoto, T. Demonstration of 10 kV SiC hybrid unipolar/bipolar operating diodes. In Proceedings of the Extended Abstracts European Conference Silicon Carbide and Related Materials 2016, Halkidiki, Greece, 25–29 September 2016.
Parameter | Value | Unit |
---|---|---|
B | 1.5 × 10−12 | cm3/s |
Cn | 5.0 × 10−31 | cm6/s |
Cp | 2.0 × 10−31 | cm6/s |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kimoto, T.; Yamada, K.; Niwa, H.; Suda, J. Promise and Challenges of High-Voltage SiC Bipolar Power Devices. Energies 2016, 9, 908. https://doi.org/10.3390/en9110908
Kimoto T, Yamada K, Niwa H, Suda J. Promise and Challenges of High-Voltage SiC Bipolar Power Devices. Energies. 2016; 9(11):908. https://doi.org/10.3390/en9110908
Chicago/Turabian StyleKimoto, Tsunenobu, Kyosuke Yamada, Hiroki Niwa, and Jun Suda. 2016. "Promise and Challenges of High-Voltage SiC Bipolar Power Devices" Energies 9, no. 11: 908. https://doi.org/10.3390/en9110908
APA StyleKimoto, T., Yamada, K., Niwa, H., & Suda, J. (2016). Promise and Challenges of High-Voltage SiC Bipolar Power Devices. Energies, 9(11), 908. https://doi.org/10.3390/en9110908