Lightweight Borohydrides Electro-Activity in Lithium Cells
Abstract
:1. Introduction
2. Computational and Experimental Details
3. Results and Discussion
3.1. Density Functional Theory (DFT) Calculation Results
3.2. Sample Preparation and Preliminary Characterization
3.3. Electrochemical Tests
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Scrosati, B.; Garche, J. Lithium batteries: Status, prospects and future. J. Power Sources 2010, 1995, 2419–2430. [Google Scholar] [CrossRef]
- Oumellal, Y.; Rougier, A.; Nazri, G.; Tarascon, J.; Aymard, L. Metal hydrides for lithium-ion batteries. Nat. Mater. 2008, 7, 916–921. [Google Scholar] [CrossRef] [PubMed]
- Vitucci, F.M.; Paolone, A.; Brutti, S.; Munaò, D.; Silvestri, L.; Panero, S.; Reale, P. H2 thermal desorption and hydride conversion reactions in Li cells of TiH2/C amorphous nanocomposites. J. Alloys Compd. 2015, 645, S46–S50. [Google Scholar] [CrossRef]
- Silvestri, L.; Forgia, S.; Farina, L.; Meggiolaro, D.; Panero, S.; La Barbera, A.; Brutti, S.; Reale, P. Lithium alanates as negative electrode in lithium ion batteries. ChemElectroChem 2015, 2, 877–886. [Google Scholar] [CrossRef]
- Orimo, S.-I.; Nakamori, Y.; Eliseo, J.R.; Züttel, A.; Jensen, C.M. Complex hydrides for hydrogen storage. Chem. Rev. 2007, 107, 4111–4132. [Google Scholar] [CrossRef] [PubMed]
- Yadav, M.; Xu, Q. Liquid-phase chemical hydrogen storage materials. Energy Environ. Sci. 2012, 5, 9698–9725. [Google Scholar] [CrossRef]
- Li, C.; Peng, P.; Zhou, D.W.; Wan, L. Research progress in LiBH4 for hydrogen storage: A review. Int. J. Hydrogen Energy 2011, 36, 14512–14526. [Google Scholar] [CrossRef]
- Muir, S.S.; Yao, X. Progress in sodium borohydride as a hydrogen storage material: Development of hydrolysis catalysts and reaction systems. Int. J. Hydrogen Energy 2011, 36, 5983–5997. [Google Scholar] [CrossRef]
- Newhouse, R.J.; Stavila, V.; Hwang, S.-J.; Klebanoff, L.E.; Zhang, J.Z. Reversibility and improved hydrogen release of magnesium borohydride. J. Phys. Chem. C 2010, 114, 5224–5232. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865. [Google Scholar] [CrossRef] [PubMed]
- Joubert, D.; Kresse, G. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758. [Google Scholar]
- Kresse, G.; Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 1993, 47, 558. [Google Scholar] [CrossRef]
- Soulié, J.-P.; Renaudin, G.; Cerny, R.; Yvon, K. Lithium boro-hydride LiBH4: I. Crystal structure. J. Alloys Compd. 2002, 346, 200–205. [Google Scholar] [CrossRef]
- Damian, G.A.; Hudson, B.S. Inelastic neutron scattering spectra of NaBH4 and KBH4: reproduction of anion mode shifts via periodic DFT. Chem. Phys. Lett. 2004, 385, 166–172. [Google Scholar]
- Vajeeston, P.; Ravindran, P.; Kjekshus, A.; Fjellvag, H. Structural stability of alkali boron tetrahydrides ABH4 (A = Li, Na, K, Rb, Cs) from first principle calculation. J. Alloys Compd. 2005, 387, 97–104. [Google Scholar] [CrossRef]
- Cerny, R.; Filinchuk, Y.; Hagemann, H.; Yvon, K. Magnesium borohydride: Synthesis and crystal structure. Angew. Chem. 2007, 119, 5867–5869. [Google Scholar] [CrossRef]
- Her, J.H.; Stephens, P.W.; Gao, Y.; Soloveichik, G.L.; Rijssenbeek, J.; Andrus, M.; Zhao, J.C. Structure of unsolvated magnesium borohydride Mg(BH4)2. Acta Crystallogr. B 2007, 63, 561–568. [Google Scholar] [CrossRef] [PubMed]
- Miwa, K.; Aoki, M.; Noritake, T.; Ohba, N.; Nakamori, Y.; Towata, S.; Zuttel, A.; Orimo, S. Thermodynamical stability of calcium borohydride Ca(BH4)2. Phys. Rev. B 2006, 74, 155122–155126. [Google Scholar] [CrossRef]
- Meggiolaro, D.; Gigli, G.; Paolone, A.; Vitucci, F.; Brutti, S. Incorporation of lithium by MgH2: An Ab Initio Study. J. Phys. Chem. C 2013, 117, 22467–22477. [Google Scholar] [CrossRef]
- Meggiolaro, D.; Gigli, G.; Paolone, A.; Reale, P.; Doublet, M.-L.; Brutti, S. Origin of the voltage hysteresis of MgH2 electrodes in lithium batteries. J. Phys. Chem. C 2015, 119, 17044–17052. [Google Scholar] [CrossRef]
- Silvestri, L.; Farina, L.; Meggiolaro, D.; Panero, S.; Padella, F.; Brutti, S.; Reale, P. On the reactivity of sodium alanates in lithium batteries. J. Phys. Chem. C 2015. [Google Scholar] [CrossRef]
- Balducci, G.; Brutti, S.; Ciccioli, A.; Gigli, G.; Manfrinetti, P.; Palenzona, A.; Butman, M.; Kudin, L. Thermodynamics of the intermediate phases in the Mg-B system. J. Phys. Chem. Solids 2005, 66, 292–297. [Google Scholar] [CrossRef]
- Brutti, S.; Colapietro, M.; Balducci, G.; Barba, L.; Manfrinetti, P.; Palenzona, A. Synchrotron powder diffraction Rietveld refinement of MgB20 crystal structure. Intermetallics 2002, 10, 811–817. [Google Scholar] [CrossRef]
- Chlopek, K.; Frommen, C.; Leon, A.; Zabara, O.; Fichtner, M. Synthesis and properties of magnesium tetrahydroborate, Mg(BH4)2. J. Mater. Chem. 2007, 17, 3496–3503. [Google Scholar] [CrossRef]
- Brutti, S.; Mulas, G.; Piciollo, E.; Panero, S.; Reale, P. Magnesium hydride as high capacity negative electrode for lithium ion batteries. J. Mater. Chem. 2012, 22, 14531–14537. [Google Scholar] [CrossRef]
- Varin, R.A.; Czujko, T.; Wronski, Z.S. Nanomaterials for Solid State Hydrogen Storage; Springer: Cleveland, OH, USA, 2008. [Google Scholar]
- Oumellal, Y.; Zlotea, C.; Bastide, S.; Cachet-Vivier, C.; Léonel, E.; Sengmany, S.; Leroy, E.; Aymard, L.; Bonnet, J.-P.; Latroche, M. Bottom-up preparation of MgH2 nanoparticles with enhanced cycle life stability during electrochemical conversion in Li-ion batteries. Nanoscale 2014, 6, 14459–14466. [Google Scholar] [CrossRef] [PubMed]
- Teprovich, J.A., Jr.; Zhang, J.; Colon-Mercado, H.; Cuevas, F.; Peters, B.; Greenway, S.; Zidan, R.; Latroche, M. Li-driven Electrochemical Conversion Reaction of AlH3, LiAlH4, and NaAlH. J. Phys. Chem. C 2015, 119, 4666–4674. [Google Scholar] [CrossRef]
- Brutti, S.; Manzi, J.; De Bonis, A.; Di Lecce, D.; Vitucci, F.; Paolone, A.; Trequattrini, F.; Panero, S. Controlled synthesis of LiCoPO4 by a solvo-thermal method at 220 °C. Mater. Lett. 2015, 145, 324–327. [Google Scholar] [CrossRef]
- Gentili, V.; Brutti, S.; Hardwick, L.J.; Armstrong, A.R.; Panero, S.; Bruce, P.G. Lithium insertion into Anatase Nanotubes. Chem. Mater. 2012, 24, 4468–4476. [Google Scholar]
- Bonino, F.; Brutti, S.; Piana, M.; Natale, S.; Scrosati, B.; Gherghel, L.; Muller, K. Structural and electrochemical studies of a hexaphenylbenzene pyrolyzed soft carbon as anode material in lithium batteries. Electrochim. Acta 2006, 51, 3407–3412. [Google Scholar] [CrossRef]
Hydride | Symmetry | Theoretical Capacity/mAhg−1 |
---|---|---|
LiBH4 | Pnma | 4992 |
NaBH4 | Fmm | 2834 |
KBH4 | Fmm | 1987 |
Mg(BH4)2 | P6122 | 3971 |
Ca(BH4)2 | α Fddd | 3074 |
Hydride | Crystal Structure | Wickoff Positions |
---|---|---|
LiBH4 | Space group (SG): Pnma a = 7.179 Å, b = 4.425 Å c = 6.784 Å α = β = γ = 90° | Li 4c 0.3432 0.2500 0.3922 |
B 4c 0.1913 0.2500 0.0750 | ||
H 4c 0.5890 0.2500 0.5700 | ||
H 4c 0.0990 0.2500 0.2278 | ||
H 8d 0.7076 0.5277 −0.0740 | ||
α-NaBH4 | SG: Fm3m a = b = c = 6.061 Å α = β = γ = 90° | Na 4a 0.0000 0.0000 0.0000 |
B 4b 0.5000 0.5000 0.5000 | ||
H 32f 0.3779 0.3779 0.3779 (SOF = 0.5) | ||
α-KBH4 | SG: Fm3m a = b = c = 6.720 Å α = β = γ = 90° | K 4a 0.0000 0.0000 0.0000 |
B 4b 0.5000 0.5000 0.5000 | ||
H 32f 0.6116 0.6116 0.6116 (SOF = 0.5) | ||
Mg(BH4)2 | SG: P6122 a = b = 10.853 Å, c = 38,007 Å α = β = 90°, γ = 120° | Mg 12c 0.05054 0.38682 0.63466 |
Mg 12c 0.52433 0.49036 0.58645 | ||
Mg 6a 0.11473 0.00000 0.00000 | ||
B 12c 0.30046 0.44814 0.61632 | ||
B 12c 0.54901 0.72715 0.70086 | ||
B 12c −0.05929 0.12179 0.64803 | ||
B 12c −0.01609 0.46331 0.68983 | ||
B 6b 0.70779 0.41558 0.25000 | ||
B 6b 0.49167 −0.01666 0.25000 | ||
H 12c 0.50844 0.30049 0.60816 | ||
H 12c 0.66786 0.41723 0.56978 | ||
H 12c 0.09056 0.58004 0.60953 | ||
H 12c −0.07431 0.37521 0.59175 | ||
H 12c 0.26859 0.49322 0.64430 | ||
H 12c 0.18881 0.36797 0.59804 | ||
H 12c 0.36242 0.37676 0.62526 | ||
H 12c 0.38660 0.56156 0.59823 | ||
H 12c 0.66970 -0.05463 0.62669 | ||
H 12c 0.82885 0.73122 0.62880 | ||
H 12c 0.63200 0.58491 0.63222 | ||
H 12c 0.71208 0.70335 0.59113 | ||
H 12c 0.84007 0.04825 0.67057 | ||
H 12c −0.02929 0.03889 0.62994 | ||
H 12c 0.05388 0.21536 0.66407 | ||
H 12c 0.89141 0.18147 0.62707 | ||
H 12c 0.09752 0.53656 0.67085 | ||
H 12c 0.87539 0.37479 0.67144 | ||
H 12c −0.04600 0.55408 0.70426 | ||
H 12c 0.01070 0.39214 0.71266 | ||
Ca(BH4)2 | SG: Fddd a = 8.737 Å, b = 13.062 Å, c = 7.477 Å α = β = γ = 90° | Ca 8a 0.0000 0.0000 0.0000 |
B 16f 0.0000 0.2227 0.0000 | ||
H 32h 0.8869 0.2773 0.0112 | ||
H 32h 0.0001 0.1693 0.1357 |
Reaction | ΔE kJ/mol | Emf V vs. Li | |
---|---|---|---|
R1 | LiBH4 + 3 Li = B + 4 LiH | −123.3 | 0.42 |
R2.1 | NaBH4 + 3 Li = NaH + B + 3 LiH | −91.7 | 0.32 |
R2.2 | NaH + Li = Na + LiH | −41.6 | 0.43 |
R2.3 | NaBH4 + 4 Li = Na + B + 4 LiH | −133.4 | 0.34 |
R3.1 | KBH4 + 3 Li = KH + B + 3 LiH | −46.5 | 0.16 |
R3.2 | KH + Li = K + LiH | −40.9 | 0.42 |
R3.3 | KBH4 + 4 Li = K + B + 4 LiH | −87.4 | 0.23 |
R4.1 | Ca(BH4)2 + 6 Li = 6 LiH + 2 B + CaH2 | −262.4 | 0.45 |
R4.2 | CaH2 + 2 Li = Ca + 2 LiH | +3.2 | −0.02 |
R4.3 | Ca(BH4)2 + 8 Li = 8 LiH + 2 B + Ca | −259.2 | 0.33 |
R5.1 | Mg(BH4)2 + 6 Li = 6 LiH + 2 B + MgH2 | −289.3 | 0.50 |
R5.2 | MgH2 + 2 Li = Mg + 2 LiH | −106.3 | 0.55 |
R5.3 | Mg(BH4)2 + 8 Li = 8 LiH + 2 B + Mg | −395.6 | 0.51 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meggiolaro, D.; Farina, L.; Silvestri, L.; Panero, S.; Brutti, S.; Reale, P. Lightweight Borohydrides Electro-Activity in Lithium Cells. Energies 2016, 9, 238. https://doi.org/10.3390/en9040238
Meggiolaro D, Farina L, Silvestri L, Panero S, Brutti S, Reale P. Lightweight Borohydrides Electro-Activity in Lithium Cells. Energies. 2016; 9(4):238. https://doi.org/10.3390/en9040238
Chicago/Turabian StyleMeggiolaro, Daniele, Luca Farina, Laura Silvestri, Stefania Panero, Sergio Brutti, and Priscilla Reale. 2016. "Lightweight Borohydrides Electro-Activity in Lithium Cells" Energies 9, no. 4: 238. https://doi.org/10.3390/en9040238
APA StyleMeggiolaro, D., Farina, L., Silvestri, L., Panero, S., Brutti, S., & Reale, P. (2016). Lightweight Borohydrides Electro-Activity in Lithium Cells. Energies, 9(4), 238. https://doi.org/10.3390/en9040238