Recent Progress on the Key Materials and Components for Proton Exchange Membrane Fuel Cells in Vehicle Applications
Abstract
:1. Introduction
1.1. The Progress and Targets of Fuel Cell Vehicle Industrialization
1.2. Industrialization Targets of the Key Materials and Components for PEMFC Vehicles
2. Proton Exchange Membranes
2.1. State-of-the-Art Proton Exchange Membranes
2.1.1. High Temperature PEM
Improving the PA Doping Level
Improving the Mechanical Properties and Durability
2.1.2. Modification of Nafion® and Aquivion®
Doping
Composite Membranes
Other Modification Methods
2.1.3. Other Membranes
Modification of Sulfonated Poly (arylene ether sulfone) (SPAES)
Modification of Sulfonated Poly (ether ether ketone) (SPEEK)
Modification of Other Membranes
Room Temperature Ionic Liquids Electrolytes
2.2. Membranes for PEM Industrialization
2.3. Future R & D Direction of PEMs
3. Catalysts System
3.1. State-of-the-Art Catalysts and Support Materials
3.1.1. Catalysts
3.1.2. Support Materials
3.2. Progress of Catalyst Industrialization
3.3. Future Direction of Catalyst Research
4. Catalyst Layer
4.1. State-of-the-Art Catalyst Layers
4.1.1. Gradient Design of Catalyst Layer
4.1.2. Ordered Design of Catalyst Layer
5. Gas Diffusion Layer (GDL)
5.1. State-of-the-Art GDL
5.1.1. Pretreatment of GDL Substrates and Preparation of Hydrophobic MPL
5.1.2. GDL Structure Optimization and Novel GDLs
5.2. The Industrialization Progress of GDLs
5.3. Future R & D Directions of Gas Diffusion Layers
6. Bipolar Plates
6.1. State-of-the-Art Progress on Bipolar Plates
6.1.1. Composite BPPs
6.1.2. Thin Metallic BPPs
Base Material
Surface Treatments and Coating
6.2. Innovative Material and 3D Flow Field for Future Bipolar Plates
7. Development of High-Durability Processing Technologies
7.1. Degradation Mechanism
7.1.1. Startup/Shutdown Processes
7.1.2. Load Variation Processes
7.2. Mitigation Strategies
7.2.1. Startup/Shutdown Processes
7.2.2. Mitigation Strategies during Load Variation Processes
8. Summary and Outlook
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Ouyang, M.G. Technology strategy and R & D progress of automotive new energy and powertrain. Trans. CSICE 2008, 26, 107–114. [Google Scholar]
- Sung, W.; Song, Y.; Yu, K.; Lim, T. Recent Advances in the Development of Hyundai·Kia’s Fuel Cell Electric Vehicles. SAE Int. J. Engines 2010, 3, 768–772. [Google Scholar]
- Wang, C.; Wang, S.B.; Zhang, J.B.; Li, J.Q.; Wang, J.L.; Ouyang, M.G. The Durability Research on the Proton Exchange Membrane Fuel Cell for Automobile Application. Prog. Chem. 2015, 27, 424–435. [Google Scholar]
- Li, J.Q.; Fang, C.; Xu, L.F. Current status and trends of the research and development for fuel cell vehicles. J. Automot. Saf. Energy 2014, 5, 17–29. [Google Scholar]
- Jones, D.J.; Change, G. Energy Issues and Regulation Policies; Springer: Dordrecht, The Netherlands, 2013; Volume 161. [Google Scholar]
- The Fuel Cell Technical Team. Fuel Cell Technical Team Roadmap; DOE: Washington, DC, USA, 2013. [Google Scholar]
- Mench, M. Polymer Electrolyte Fuel Cell Degradation; Elsevier: Amsterdam, The Netherlands, 2011; Volume 112. [Google Scholar]
- Holmström, N.; Wiezell, K.; Lindbergh, G. Studying low-humidity effects in PEFCs using EIS: I. Experimental fuel cells, electrolyzers, and energy conversion. J. Electrochem. Soc. 2012, 159, F369–F378. [Google Scholar]
- Makharia, R.; Kocha, S.S.; Yu, P.T.; Sweikart, M.A.; Gu, W.; Wagner, F.T.; Gasteiger, H.A. Durable PEM fuel cell electrode materials: Requirements and benchmarking methodologies. ECS Trans. 2006, 1, 3–18. [Google Scholar]
- Hooshyari, K.; Javanbakht, M.; Shabanikia, A.; Enhessari, M. Fabrication BaZrO3/PBI-based nanocomposite as a new proton conducting membrane for high temperature proton exchange membrane fuel cells. J. Power Sources 2015, 276, 62–72. [Google Scholar]
- Rosero-Navarro, N.C.; Domingues, E.M.; Sousa, N.; Ferreira, P.; Figueiredo, F.M. Protonic conductivity and viscoelastic behaviour of Nafion membranes with periodic mesoporous organosilica fillers. Int. J. Hydrog. Energy 2014, 39, 5338–5349. [Google Scholar]
- Singha, S.; Jana, T. Structure and properties of polybenzimidazole silica nanocomposite electrolyte membrane influence of organic inorganic interface. ACS Appl. Mater. Interfaces 2014, 6, 21286–21296. [Google Scholar]
- Tominaga, Y.; Maki, T. Proton-conducting composite membranes based on polybenzimidazole and sulfonated mesoporous organosilicate. Int. J. Hydrog. Energy 2014, 39, 2724–2730. [Google Scholar]
- Guo, Z.; Xu, X.; Xiang, Y.; Lu, S.; Jiang, S.P. New anhydrous proton exchange membranes for high-temperature fuel cells based on PVDF-PVP blended polymers. J. Mater. Chem. A 2015, 3, 148–155. [Google Scholar]
- Perry, K.A.; More, K.L.; Payzant, E.A.; Meisner, R.A.; Sumpter, B.G.; Benicewicz, B.C. Comparative study of phosphoric acid-doped m-PBI membranes. J. Polym. Sci. B Polym. Phys. 2014, 52, 26–35. [Google Scholar]
- Yuan, S.; Tang, Q.; He, B.; Chen, H.; Li, Q.; Ma, C.; Jin, S.; Liu, Z. H3PO4 imbibed polyacrylamide-graft-chitosan frameworks for high-temperature proton exchange membranes. J. Power Sources 2014, 249, 277–284. [Google Scholar]
- Qin, Q.; Tang, Q.; Li, Q.; He, B.; Chen, H.; Wang, X.; Yang, P. Incorporation of H3PO4 into three-dimensional polyacrylamide-graft-starch hydrogel frameworks for robust high-temperature proton exchange membrane fuel cells. Int. J. Hydrog. Energy 2014, 39, 4447–4458. [Google Scholar]
- Park, J.; Wang, L.; Advani, S.G.; Prasad, A.K. Mechanical stability of H3PO4-doped PBI hydrophilic-pretreated PTFE membranes for high temperature PEMFCs. Electrochim. Acta 2014, 120, 30–38. [Google Scholar]
- Yang, J.S.; Cleemann, L.N.; Steenberg, T.; Terkelsen, C.; Li, Q.F.; Jensen, J.O.; Hjuler, H.A.; J. Bjerrum, N.; He, R.H. High molecular weight polybenzimidazole membranes for high temperature PEMFC. Fuel Cells 2014, 14, 7–15. [Google Scholar]
- Jeon, Y.; Hwang, H.; Park, J.; Hwang, H.; Shul, Y. Temperature-dependent performance of the polymer electrolyte membrane fuel cell using short-side-chain perfluorosulfonic acid ionomer. Int. J. Hydrog. Energy 2014, 39, 11690–11699. [Google Scholar]
- Zhang, H.; Li, J.; Tang, H.; Lin, Y.; Pan, M. Hydrogen crossover through perfluorosulfonic acid membranes with variable side chains and its influence in fuel cell lifetime. Int. J. Hydrog. Energy 2014, 39, 15989–15995. [Google Scholar]
- Del Río, C.; Morales, E.; Escribano, P.G. Nafion sPOSS hybrid membranes for PEMFC Single cell performance and electrochemical characterization at different humidity conditions. Int. J. Hydrog. Energy 2014, 39, 5326–5337. [Google Scholar]
- He, X.H.; Zheng, Y.; Yao, H.L.; Chen, Y.W.; Chen, D.F. Hybrid network sulfonated polynorbornene/silica membranes with enhanced proton conductivity by doped phosphotungstic acid. Fuel Cells 2014, 14, 26–34. [Google Scholar]
- Bose, A.B.; Gopu, S.; Li, W. Enhancement of proton exchange membrane fuel cells performance at elevated temperatures and lower humidities by incorporating immobilized phosphotungstic acid in electrodes. J. Power Sources 2014, 263, 217–222. [Google Scholar]
- Inagaki, S.; Guan, S.; Ohsuna, T.; Terasaki, O. An ordered mesoporous organosilica hybrid material with a crystal-like wall structure. Nature 2002, 416, 304–307. [Google Scholar]
- Yang, Q.; Kapoor, M.P.; Inagaki, S. Sulfuric acid-functionalized mesoporous benzene-silica with a molecular-scale periodicity in the walls. J. Am. Chem. Soc. 2002, 124, 9694–9695. [Google Scholar]
- Sharifi, M.; Kohler, C.; Tolle, P.; Frauenheim, T.; Wark, M. Proton conductivity of SO3H-functionalized benzene-periodic mesoporous organosilica. Small 2011, 7, 1086–1097. [Google Scholar]
- Domingues, E.M.; Salvador, M.A.; Ferreira, P.; Figueiredo, F.M. Acid-functionalised periodic mesoporous benzenosilica proton conductors. Solid State Ion. 2012, 225, 308–311. [Google Scholar]
- Zhao, Z.; Pu, H.; Chang, Z.; Pan, H. A versatile strategy towards semi-interpenetrating polymer network for proton exchange membranes. Int. J. Hydrog. Energy 2014, 39, 6657–6663. [Google Scholar]
- Li, H.Y.; Liu, Y.L. Nafion-functionalized electrospun poly vinylidene fluoride PVDF nanofibers for high performance proton exchange membranes in fuel cells. J. Mater. Chem. A 2014, 2, 3783–3793. [Google Scholar]
- Moukheiber, E.; Bas, C.; Flandin, L. Understanding the formation of pinholes in PFSA membranes with the essential work of fracture (EWF). Int. J. Hydrog. Energy 2014, 39, 2717–2723. [Google Scholar]
- Xiao, P.; Li, J.; Chen, R.; Wang, R.; Pan, M.; Tang, H. Understanding of temperature-dependent performance of short-side-chain perfluorosulfonic acid electrolyte and reinforced composite membrane. Int. J. Hydrog. Energy 2014, 39, 15948–15955. [Google Scholar]
- D’Urso, C.; Oldani, C.; Baglio, V.; Merlo, L.; Arico, A.S. Towards fuel cell membranes with improved lifetime: Aquivion® Perfluorosulfonic Acid membranes containing immobilized radical scavengers. J. Power Sources 2014, 272, 753–758. [Google Scholar]
- Kim, T.E.; Juon, S.M.; Park, J.H.; Shul, Y.G.; Cho, K.Y. Silicon carbide fiber-reinforced composite membrane for high-temperature and low-humidity polymer exchange membrane fuel cells. Int. J. Hydrog. Energy 2014, 39, 16474–16485. [Google Scholar]
- Wang, L.; Advani, S.G.; Prasad, A.K. Self-hydrating Pt CeO2-nafion composite membrane for improved durability and performance. ECS Electrochem. Lett. 2014, 3, F30–F32. [Google Scholar]
- Wang, R.; Zhang, W.; He, G.; Gao, P. Controlling fuel crossover and hydration in ultra-thin proton exchange membrane-based fuel cells using Pt-nanosheet catalysts. J. Mater. Chem. A 2014, 2, 16416–16423. [Google Scholar]
- Wang, R.J.; Yan, X.M.; Wu, X.M.; He, G.H.; Lin, D.; Hu, Z.W.; Tan, M. Modification of hydrophilic channels in Nafion membranes by DMBA mechanism and effects on proton conductivity. J. Polym. Sci. B Polym. Phys. 2014, 52, 1107–1117. [Google Scholar]
- Napoli, L.; Franco, J.; Fasoli, H.; Sanguinetti, A. Conductivity of Nafion (R) 117 membrane used in polymer electrolyte fuel cells. Int. J. Hydrog. Energy 2014, 39, 8656–8660. [Google Scholar]
- Li, G.; Xie, J.; Cai, H.; Qiao, J. New highly proton-conducting membrane based on sulfonated poly (arylene ether sulfone)s containing fluorophenyl pendant groups, for low-temperature polymer electrolyte membrane fuel cells. Int. J. Hydrog. Energy 2014, 39, 2639–2648. [Google Scholar]
- Kwon, Y.; Lee, S.Y.; Hong, S.; Jang, J.H.; Henkensmeier, D.; Yoo, S.J.; Kim, H.J.; Kim, S.H. Novel sulfonated poly(arylene ether sulfone) containing hydroxyl groups for enhanced proton exchange membrane properties. Polym. Chem. 2015, 6, 233–239. [Google Scholar]
- Wang, R.; Wu, X.; Yan, X.; He, G.; Hu, Z. Proton conductivity enhancement of SPEEK membrane through n-BuOH. J. Membr. Sci. 2015, 479, 46–54. [Google Scholar]
- Seden, M.G.; Bastürk, E.; Inan, T.Y.; Apohan, N.K.; Güngor, A. Synthesis and fuel cell characterization of blend membranes from phenyl phosphine oxide containing flourinated novel polymers. J. Power Sources 2014, 271, 465–479. [Google Scholar]
- Jetsrisuparb, K.; Balog, S.; Bas, C.; Perrin, L.; Wokaun, A.; Gubler, L. Proton conducting membranes prepared by radiation grafting of styrene and various comonomers. Eur. Polym. J. 2014, 53, 75–89. [Google Scholar]
- He, Y.; Tong, C.; Geng, L.; Liu, L.; Lü, C. Enhanced performance of the sulfonated polyimide proton exchange membranes by graphene oxide Size effect of graphene oxide. J. Membr. Sci. 2014, 458, 36–46. [Google Scholar]
- Armand, M.; Endres, F.; MacFarlane, D.R.; Ohno, H.; Scrosati, B. Ionic-liquid materials for the electrochemical challenges of the future. Nat. Mater. 2009, 8, 621–629. [Google Scholar] [PubMed]
- Ye, H.; Huang, J.; Xu, J.J.; Kodiweera, N.K.A.C.; Jayakody, J.R.P.; Greenbaum, S.G. New membranes based on ionic liquids for PEM fuel cells at elevated temperatures. J. Power Sources 2008, 178, 651–660. [Google Scholar] [CrossRef]
- Díaz, M.; Ortiz, A.; Ortiz, I. Progress in the use of ionic liquids as electrolyte membranes in fuel cells. J. Membr. Sci. 2014, 469, 379–396. [Google Scholar] [CrossRef]
- Lemus, J.; Eguizábal, A.; Pina, M.P. Endurance strategies for the preparation of high temperature polymer electrolyte membranes by UV polymerization of 1-H-3-vinylimidazolium bis (trifluoromethanesulfonyl) imide for fuel cell applications. Int. J. Hydrog. Energy 2016, 41, 3981–3993. [Google Scholar] [CrossRef]
- Jin, H.; O’Hare, B.; Dong, J.; Arzhantsev, S.; Baker, G.A.; Wishart, J.F. Physical properties of ionic liquids consisting of the 1-butyl-3-methylimidazolium cation with various anions and the bis(trifluoromethylsulfonyl)imide anion with various cations. J. Phys. Chem. B. 2007, 112, 81–92. [Google Scholar] [CrossRef] [PubMed]
- Nieto de Castro, C.A.; Lourenço, M.J.V.; Ribeiro, A.P.C.; Langa, E.; Vieira, S.I.C.; Goodrich, P. Thermal Properties of Ionic Liquids and IoNanofluids of Imidazolium and Pyrrolidinium Liquids. J. Chem. Eng. Data. 2009, 55, 653–561. [Google Scholar] [CrossRef]
- Ohno, H. Functional design of ionic liquids. Bull. Chem. Soc. Jpn. 2006, 79, 1665–1680. [Google Scholar] [CrossRef]
- Olivier-Bourbigou, H.; Magna, L.; Morvan, D. Ionic liquids and catalysis: Recent progress from knowledge to applications. Appl. Catal. A Gen. 2010, 373, 1–56. [Google Scholar] [CrossRef]
- Yandrasits, M. Fuel Cell Technical Team Roadmap. Available online: http://www.hydrogen.energy.gov/pdfs/review14/fc109_yandrasits_2014_o.pdf (accessed on 17 June 2014).
- Aricò, A.S.; Blasi, A.D.; Brunaccini, G.; Sergi, F.; Dispenza, G.; Andaloro, L.; Ferraro, M.; Antonucci, V.; Asher, P.; Buche, S.; et al. High temperature operation of a solid polymer electrolyte fuel cell stack based on a new ionomer membrane. Fuel Cells 2010, 10, 1013–1023. [Google Scholar] [CrossRef]
- Chen, C.; Kang, Y.; Huo, Z.; Zhu, Z.; Huang, W.; Xin, H.L.; Snyder, J.D.; Li, D.; Herron, J.A.; Mavrikakis, M. Highly crystalline multimetallic nanoframes with three-dimensional electrocatalytic surfaces. Science 2014, 343, 1339–1343. [Google Scholar] [CrossRef] [PubMed]
- Cui, C.; Gan, L.; Li, H.H.; Yu, S.H.; Heggen, M.; Strasser, P. Octahedral PtNi nanoparticle catalysts: Exceptional oxygen reduction activity by tuning the alloy particle surface composition. Nano Lett. 2012, 12, 5885–5889. [Google Scholar] [CrossRef] [PubMed]
- Huang, K.; Sasaki, K.; Adzic, R.R.; Xing, Y. Increasing Pt oxygen reduction reaction activity and durability with a carbon-doped TiO2 nanocoating catalyst support. J. Mater. Chem. 2012, 22, 16824–16832. [Google Scholar] [CrossRef]
- Guilminot, E.; Corcella, A.; Chatenet, M.; Maillard, F.; Charlot, F.; Berthomé, G.; Iojoiu, C.; Sanchez, J.Y.; Rossinot, E.; Claude, E. Membrane and active layer degradation upon PEMFC steady-state operation: I. Platinum dissolution and redistribution within the MEA fuel cells and energy conversion. J. Electrochem. Soc. 2007, 154, B1106–B1114. [Google Scholar] [CrossRef]
- Meyers, J.P.; Darling, R.M. Model of carbon corrosion in PEM fuel cells batteries, fuel cells, and energy conversion. J. Electrochem. Soc. 2006, 153, A1432–A1442. [Google Scholar] [CrossRef]
- Han, B.H.; Carlton, C.E.; Kongkanand, A.; Kukreja, R.S.; Theobald, B.R.; Gan, L.; O’Malley, R.; Strasser, P.; Wagner, F.T.; Shao-Horn, Y. Record activity and stability of dealloyed bimetallic catalysts for proton exchange membrane fuel cells. Energy Environ. Sci. 2015, 8, 258–266. [Google Scholar] [CrossRef]
- Stamenkovic, V.R.; Fowler, B.; Mun, B.S.; Wang, G.; Ross, P.N.; Lucas, C.A.; Marković, N.M. Improved oxygen reduction activity on Pt3Ni(111) via increased surface site availability. Science 2007, 315, 493–497. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Mo, Y.; Vukmirovic, M.; Klie, R.; Sasaki, K.; Adzic, R. Platinum monolayer electrocatalysts for O2 reduction: Pt monolayer on Pd(111) and on carbon-supported Pd nanoparticles. J. Phys. Chem. B 2004, 108, 10955–10964. [Google Scholar] [CrossRef]
- Zhang, J.; Vukmirovic, M.B.; Xu, Y.; Mavrikakis, M.; Adzic, R.R. Controlling the catalytic activity of platinum-monolayer electrocatalysts for oxygen reduction with different substrates. Angew. Chem. Int. Ed. 2005, 44, 2132–2135. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.X.; Inada, H.; Wu, L.J.; Zhu, Y.M.; Choi, Y.M.; Liu, P.; Zhou, W.P.; Adzic, R.R. Oxygen reduction on well-defined core-shell nanocatalysts: Particle size, facet, and Pt shell thickness effects. J. Am. Chem. Soc. 2009, 131, 17298–17302. [Google Scholar] [CrossRef] [PubMed]
- Kuttiyiel, K.A.; Sasaki, K.; Choi, Y.; Su, D.; Liu, P.; Adzic, R.R. Nitride stabilized PtNi core-shell nanocatalyst for high oxygen reduction activity. Nano Lett. 2012, 12, 6266–6271. [Google Scholar] [CrossRef] [PubMed]
- Adzic, R.; Wang, J.; Vukmirovic, M.; Sasaki, K.; Yang, S.H.; Malley, R.O. Contiguous Platinum Monolayer Oxygen Reduction Electrocatalysts on High-Stability-Low-Cost Supports; Hydrogen and Fuel Cells Program; DOE: Washington, DC, USA, 2010; pp. V26–V30. [Google Scholar]
- Garsuch, A.; Stevens, D.A.; Sanderson, R.J.; Wang, S.; Atanasoski, R.T.; Hendricks, S.; Debe, M.K.; Dahn, J.R. Alternative Catalyst Supports Deposited on Nanostructured Thin Films for Proton Exchange Membrane Fuel Cells. J. Electrochem. Soc. 2010, 157, B187–B194. [Google Scholar] [CrossRef]
- Bonakdarpour, A.; Stevens, K.; Vernstrom, G.D.; Atanasoski, R.; Schmoeckel, A.K.; Debe, M.K.; Dahn, J.R. Oxygen reduction activity of Pt and Pt-Mn-Co electrocatalysts sputtered on nano-structured thin film support. Electrochim. Acta 2007, 53, 688–694. [Google Scholar] [CrossRef]
- Debe, M.K. Advanced cathode catalysts and supports for PEM fuel cells. In Proceedings of the 2011 Hydrogen Program Annual Merit Review and Peer Evaluation Meeting, Washington, DC, USA, 9–13 May.
- Debe, M.K.; Steinbach, A.; Atanasoski, R.; Vernstrom, G.; Hendricks, S.; Kurkowski, M.; Hester, A.; Larson, J. Advanced cathode catalysts and supports for PEM fuel cells. In Proceedings of the 2010 Hydrogen Program Annual Merit Review and Peer Evaluation Meeting, Washington, DC, USA, 7–11 June 2010.
- Zelenay, P. Non-Precious Metal Fuel Cell Cathodes: Catalyst Development and Electrode Structure Design. Available online: https://www.hydrogen.energy.gov/pdfs/review13/fc107_zelenay_2013_p.pdf (accessed on 13 May 2013).
- Serov, A.; Artyushkova, K.; Atanassov, P. Fe-N-C oxygen reduction fuel cell catalyst derived from carbendazim: Synthesis, structure, and reactivity. Adv. Energy Mater. 2014, 4, 919–926. [Google Scholar] [CrossRef]
- Zhou, Y.; Neyerlin, K.; Olson, T.S.; Pylypenko, S.; Bult, J.; Dinh, H.N.; Gennett, T.; Shao, Z.; O’Hayre, R. Enhancement of Pt and Pt-alloy fuel cell catalyst activity and durability via nitrogen-modified carbon supports. Energy Environ. Sci. 2010, 3, 1437–1446. [Google Scholar] [CrossRef]
- Zhang, C.; Xu, L.; Shan, N.; Sun, T.; Chen, J.; Yan, Y. enhanced electrocatalytic activity and durability of Pt particles supported on ordered mesoporous carbon spheres. ACS Catal. 2014, 4, 1926–1930. [Google Scholar] [CrossRef]
- Hsu, C.H.; Wu, H.M.; Kuo, P.L. Excellent performance of Pt on high nitrogen-containing carbon nanotubes using aniline as nitrogen/carbon source, dispersant and stabilizer. Chem. Commun. 2010, 46, 7628–7630. [Google Scholar] [CrossRef] [PubMed]
- Seselj, N.; Engelbrekt, C.; Zhang, J. Graphene-supported platinum catalysts for fuel cells. Sci. Bull. 2015, 60, 864–876. [Google Scholar] [CrossRef]
- Cheng, K.; He, D.P.; Peng, T.; Lv, H.F.; Pan, M.; Mu, S.C. Porous graphene supported Pt catalysts for proton exchange membrane fuel cells. Electrochim. Acta 2014, 132, 356–363. [Google Scholar] [CrossRef]
- Sun, Q.; Kim, S. Synthesis of nitrogen-doped graphene supported Pt nanoparticles catalysts and their catalytic activity for fuel cells. Electrochim. Acta 2015, 153, 566–573. [Google Scholar] [CrossRef]
- Jafri, R.I.; Rajalakshmi, N.; Dhathathreyan, K.S.; Ramaprabhu, S. Nitrogen doped graphene prepared by hydrothermal and thermal solid state methods as catalyst supports for fuel cell. Int. J. Hydrog. Energy 2015, 40, 4337–4348. [Google Scholar] [CrossRef]
- Lei, M.; Wang, Z.B.; Li, J.S.; Tang, H.L.; Liu, W.J.; Wang, Y.G. CeO2 nanocubes-graphene oxide as durable and highly active catalyst support for proton exchange membrane fuel cell. Sci. Rep. 2013, 4, 7415–7415. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Z.Z.; Wang, Z.B.; Qu, W.L.; Gu, D.M.; Yin, G.P. Synthesis and characterization of carbon riveted Pt/MWCNTs@TiO2-TiC catalyst with high durability for PEMFCs application. Appl. Catal. B Environ. 2012, 123–124, 214–220. [Google Scholar] [CrossRef]
- Ignaszak, A.; Song, C.J.; Zhu, W.M.; Zhang, J.J.; Bauer, A.; Baker, R.; Neburchilov, V.; Ye, S.Y.; Campbell, S. Titanium carbide and its core-shelled derivative TiC@TiO2 as catalyst supports for proton exchange membrane fuel cells. Electrochim. Acta 2012, 69, 397–405. [Google Scholar] [CrossRef]
- Zhao, Y.L.; Wang, Y.H.; Cheng, X.Z.; Dong, L.; Zhang, Y.; Zang, J.B. Platinum nanoparticles supported on epitaxial TiC/nanodiamond as an electrocatalyst with enhanced durability for fuel cells. Carbon 2014, 67, 409–416. [Google Scholar] [CrossRef]
- Stamatin, S.N.; Speder, J.; Dhiman, R.; Arenz, M.; Skou, E.M. Electrochemical stability and postmortem studies of Pt/SiC catalysts for polymer electrolyte membrane fuel cells. ACS Appl. Mater. Interfaces 2015, 7, 6153–6161. [Google Scholar] [CrossRef] [PubMed]
- Dong, L.; Zang, J.B.; Su, J.; Jia, Y.D.; Wang, Y.H.; Lu, J.; Xu, X.P. Oxidized carbon/nano-SiC supported platinum nanoparticles as highly stable electrocatalyst for oxygen reduction. Int. J. Hydrog. Energy 2014, 39, 16310–16317. [Google Scholar] [CrossRef]
- Dhiman, R.; Stamatin, S.N.; Andersen, S.M.; Morgenb, P.; Skoua, E.M. Oxygen reduction and methanol oxidation behaviour of SiC based Pt nanocatalysts for proton exchange membrane fuel cells. J. Mater. Chem. A 2013, 1, 15509–15516. [Google Scholar] [CrossRef] [Green Version]
- Liang, C.; Ding, L.; Li, C.; Pang, M.; Su, D.; Li, W.; Wang, Y. Nanostructured WCx/CNTs as highly efficient support of electrocatalysts with low Pt loading for oxygen reduction reaction. Energy Environ. Sci. 2010, 3, 1121–1127. [Google Scholar] [CrossRef]
- Liu, Y.; Mustain, W.E. High stability, high activity Pt/ITO oxygen reduction electrocatalysts. J. Am. Chem. Soc. 2012, 135, 530–533. [Google Scholar] [CrossRef] [PubMed]
- Nie, M.; Shen, P.K.; Wu, M.; Wei, Z.; Meng, H. A study of oxygen reduction on improved Pt-WC/C electrocatalysts. J. Power Sources 2006, 162, 173–176. [Google Scholar] [CrossRef]
- Gasteiger, H.A.; Kocha, S.S.; Sompalli, B.; Wagner, F.T. Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs. Appl. Catal. B Environ. 2005, 56, 9–35. [Google Scholar] [CrossRef]
- Mathias, M.F.; Makharia, R.; Gasteiger, H.A.; Conley, J.J.; Fuller, T.J.; Gittleman, C.J.; Kocha, S.S.; Miller, D.P.; Mittelsteadt, C.K.; Xie, T. Two fuel cell cars in every garage. Electrochem. Soc. Interface 2005, 14, 24–35. [Google Scholar]
- Wagner, F.T.; Yan, S.G.; Yu, P.T. Catalyst and catalyst-support durability. In Handbook of Fuel Cells; EG&G Technical Services, Inc.: Morgantown, WV, USA, 2009. [Google Scholar]
- Ishiguro, N.; Kityakarn, S.; Sekizawa, O.; Uruga, T.; Sasabe, T.; Nagasawa, K.; Yokoyama, T.; Tada, M. Rate enhancements in structural transformations of Pt-Co and Pt-Ni bimetallic cathode catalysts in polymer electrolyte fuel cells studied by in situ time-resolved X-ray absorption fine structure. J. Phys. Chem. C 2014, 118, 15874–15883. [Google Scholar] [CrossRef]
- Ticianelli, E.A. Methods to advance technology of proton exchange membrane fuel cells electrochemical science and technology. J. Electrochem. Soc. 1988, 135, 2209–2214. [Google Scholar] [CrossRef]
- Wilson, M.S.; Gottesfeld, S. Thin-film catalyst layers for polymer electrolyte fuel cell electrodes. J. Appl. Electrochem. 1992, 22, 1–7. [Google Scholar] [CrossRef]
- Litster, S.; McLean, G. PEM fuel cell electrodes. J. Power Sources 2004, 130, 61–76. [Google Scholar] [CrossRef]
- Shukla, S.; Domican, K.; Karan, K.; Bhattacharjee, S.; Secanell, M. Analysis of low platinum loading thin polymer electrolyte fuel cell electrodes prepared by inkjet printing. Electrochim. Acta 2015, 156, 289–300. [Google Scholar] [CrossRef]
- Wang, X.; Richey, F.W.; Wujcik, K.H.; Elabd, Y.A. Ultra-low platinum loadings in polymer electrolyte membrane fuel cell electrodes fabricated via simultaneous electrospinning/electrospraying method. J. Power Sources 2014, 264, 42–48. [Google Scholar] [CrossRef]
- Mróz, W.; Budner, B.; Tokarz, W.; Piela, P.; Korwin-Pawlowski, M.L. Ultra-low-loading pulsed-laser-deposited platinum catalyst films for polymer electrolyte membrane fuel cells. J. Power Sources 2015, 273, 885–893. [Google Scholar] [CrossRef]
- Li, B.; Yan, Z.; Higgins, D.C.; Yang, D.; Chen, Z.; Ma, J. Carbon-supported Pt nanowire as novel cathode catalysts for proton exchange membrane fuel cells. J. Power Sources 2014, 262, 488–493. [Google Scholar] [CrossRef]
- Martin, S.; Martinez-Vazquez, B.; Garcia-Ybarra, P.L.; Castillo, J.L. Peak utilization of catalyst with ultra-low Pt loaded PEM fuel cell electrodes prepared by the electrospray method. J. Power Sources 2013, 229, 179–184. [Google Scholar] [CrossRef]
- Huang, T.; Shen, H.; Jao, T.; Weng, F.; Su, A. Ultra-low Pt loading for proton exchange membrane fuel cells by catalyst coating technique with ultrasonic spray coating machine. Int. J. Hydrog. Energy 2012, 37, 13872–13879. [Google Scholar] [CrossRef]
- Millington, B.; Whipple, V.; Pollet, B.G. A novel method for preparing proton exchange membrane fuel cell electrodes by the ultrasonic-spray technique. J. Power Sources 2011, 196, 8500–8508. [Google Scholar] [CrossRef]
- Hwang, D.S.; Park, C.H.; Yi, S.C.; Lee, Y.M. Optimal catalyst layer structure of polymer electrolyte membrane fuel cell. Int. J. Hydrog. Energy 2011, 36, 9876–9885. [Google Scholar] [CrossRef]
- Saha, M.S.; Malevich, D.; Halliop, E.; Pharoah, J.G.; Peppley, B.A.; Karan, K. Electrochemical activity and catalyst utilization of low Pt and thickness controlled membrane electrode assemblies fuel cells and energy conversion. J. Electrochem. Soc. 2011, 158, B562–B567. [Google Scholar] [CrossRef]
- Soboleva, T.; Zhao, X.; Malek, K.; Xie, Z.; Navessin, T.; Holdcroft, S. On the micro-, meso-, and macroporous structures of polymer electrolyte membrane fuel cell catalyst layers. ACS Appl. Mater. Interfaces 2010, 2, 375–384. [Google Scholar] [CrossRef] [PubMed]
- Middelman, E. Improved PEM fuel cell electrodes by controlled self-assembly. Fuel Cells Bull. 2002, 2002, 9–12. [Google Scholar] [CrossRef]
- Ahn, C.; Cheon, J.; Joo, S.; Kim, J. Effects of ionomer content on Pt catalyst/ordered mesoporous carbon support in polymer electrolyte membrane fuel cells. J. Power Sources 2013, 222, 477–482. [Google Scholar] [CrossRef]
- Fujigaya, T.; Nakashima, N. Fuel cell electrocatalyst using polybenzimidazole-modified carbon nanotubes as support materials. Adv. Mater. 2013, 25, 1666–1681. [Google Scholar] [CrossRef] [PubMed]
- Kim, O.; Cho, Y.; Kang, S.H.; Park, H.; Kim, M.; Lim, J.W.; Chung, D.Y.; Lee, M.J.; Choe, H.; Sung, Y. Ordered macroporous platinum electrode and enhanced mass transfer in fuel cells using inverse opal structure. Nat. Commun. 2013, 4, 2473. [Google Scholar] [CrossRef] [PubMed]
- Zeng, J.; Francia, C.; Dumitrescu, M.A.; Monteverde, V.A.H.A.; Ijeri, V.S.; Specchia, S.; Spinelli, P. Electrochemical performance of Pt-based catalysts supported on different ordered mesoporous carbons (Pt/OMCs) for oxygen reduction reaction. Ind. Eng. Chem. Res. 2012, 51, 7500–7509. [Google Scholar] [CrossRef]
- Wang, T.; Zhang, C.; Sun, X.; Guo, Y.; Guo, H.; Tang, J.; Xue, H.; Liu, M.; Zhang, X.; Zhu, L.; Xie, Q.; He, J. Synthesis of ordered mesoporous boron-containing carbon films and their corrosion behavior in simulated proton exchange membrane fuel cells environment. J. Power Sources 2012, 212, 1–12. [Google Scholar] [CrossRef]
- Tian, Z.Q.; Lim, S.H.; Poh, C.K.; Tang, Z.; Xia, Z.; Luo, Z.; Shen, P.K.; Chua, D.; Feng, Y.P.; Shen, Z.; Lin, J. A highly order-structured membrane electrode assembly with vertically aligned carbon nanotubes for ultra-low Pt loading PEM fuel cells. Adv. Energy Mater. 2011, 1, 1205–1214. [Google Scholar] [CrossRef]
- Kim, J.H.; Fang, B.; Kim, M.; Yoon, S.B.; Bae, T.; Ranade, D.R.; Yu, J. Facile synthesis of bimodal porous silica and multimodal porous carbon as an anode catalyst support in proton exchange membrane fuel cell. Electrochim. Acta 2010, 55, 7628–7633. [Google Scholar] [CrossRef]
- Dong, B.; Gwee, L.; Salas-de La Cruz, D.; Winey, K.I.; Elabd, Y.A. super proton conductive high-purity Nafion nanofibers. Nano Lett. 2010, 10, 3785–3790. [Google Scholar] [CrossRef] [PubMed]
- Fang, B.; Kim, J.H.; Kim, M.; Yu, J. Ordered hierarchical nanostructured carbon as a highly efficient cathode catalyst support in proton exchange membrane fuel cell. Chem. Mater. 2009, 21, 789–796. [Google Scholar] [CrossRef]
- Caillard, A.; Charles, C.; Boswell, R.; Brault, P. Improvement of the sputtered platinum utilization in proton exchange membrane fuel cells using plasma-based carbon nanofibers. J. Phys. D Appl. Phys. 2008, 41, 2824–2833. [Google Scholar] [CrossRef]
- Pan, C.; Wu, H.; Wang, C.; Wang, B.; Zhang, L.; Cheng, Z.; Hu, P.; Pan, W.; Zhou, Z.; Yang, X.; et al. Nanowire-based high-performance “micro fuel cells”: One nanowire, one fuel cell. Adv. Mater. 2008, 20, 1644–1648. [Google Scholar] [CrossRef]
- Calvillo, L.; Lázaro, M.J.; García-Bordejé, E.; Moliner, R.; Cabot, P.L.; Esparbé, I.; Pastor, E.; Quintana, J.J. Platinum supported on functionalized ordered mesoporous carbon as electrocatalyst for direct methanol fuel cells. J. Power Sources 2007, 169, 59–64. [Google Scholar] [CrossRef]
- Li, W.; Wang, X.; Chen, Z.; Waje, M.; Yan, Y. Carbon nanotube film by filtration as cathode catalyst support for proton-exchange membrane fuel cell. Langmuir 2005, 21, 9386–9389. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Waje, M.; Wang, X.; Tang, J.M.; Haddon, R.C.; Yan, Y. Proton exchange membrane fuel cells with carbon nanotube based electrodes. Nano Lett. 2004, 4, 345–348. [Google Scholar] [CrossRef]
- Joo, S.H.; Choi, S.J.; Oh, I.; Kwak, J.; Liu, Z.; Terasaki, O.; Ryoo, R. Ordered nanoporous arrays of carbon supporting high dispersions of platinum nanoparticles. Nature 2001, 412, 169–172. [Google Scholar] [CrossRef] [PubMed]
- Ryoo, R.; Joo, S.H.; Kruk, M.; Jaroniec, M. Ordered mesoporous carbons. Adv. Mater. 2001, 13, 677–681. [Google Scholar] [CrossRef]
- Debe, M.K. Tutorial on the fundamental characteristics and practical properties of nanostructured thin film (NSTF) catalysts fuel cells, electrolyzers, and energy conversion. J. Electrochem. Soc. 2013, 160, F522–F534. [Google Scholar] [CrossRef]
- Debe, M.K. Electrocatalyst approaches and challenges for automotive fuel cells. Nature 2012, 486, 43–51. [Google Scholar] [CrossRef] [PubMed]
- Song, D.; Wang, Q.; Liu, Z.; Eikerling, M.; Xie, Z.; Navessin, T.; Holdcroft, S. A method for optimizing distributions of Nafion and Pt in cathode catalyst layers of PEM fuel cells. Electrochim. Acta 2005, 50, 3347–3358. [Google Scholar] [CrossRef]
- Srinivasarao, M.; Bhattacharyya, D.; Rengaswamy, R.; Narasimhan, S. Performance analysis of a PEM fuel cell cathode with multiple catalyst layers. Int. J. Hydrog. Energy 2010, 35, 6356–6365. [Google Scholar] [CrossRef]
- Matsuda, H.; Fushinobu, K.; Ohma, A.; Okazaki, K. Structural effect of cathode catalyst layer on the performance of PEFC. J. Therm. Sci. Technol. 2011, 6, 154–163. [Google Scholar] [CrossRef]
- Roshandel, R.; Ahmadi, F. Effects of catalyst loading gradient in catalyst layers on performance of polymer electrolyte membrane fuel cells. Renew. Energy 2013, 50, 921–931. [Google Scholar] [CrossRef]
- Fofana, D.; Hamelin, J.; Bénard, P. Modelling and experimental validation of high performance low platinum multilayer cathode for polymer electrolyte membrane fuel cells (PEMFCs). Int. J. Hydrog. Energy 2013, 38, 10050–10062. [Google Scholar] [CrossRef]
- Fofana, D.; Natarajan, S.K.; Hamelin, J.; Benard, P. Low platinum, high limiting current density of the PEMFC (proton exchange membrane fuel cell) based on multilayer cathode catalyst approach. Energy 2014, 64, 398–403. [Google Scholar] [CrossRef]
- Wilkinson, D.P.; St-Pierre, J. In-plane gradients in fuel cell structure and conditions for higher performance. J. Power Sources 2003, 113, 101–108. [Google Scholar] [CrossRef]
- Prasanna, M.; Cho, E.A.; Kim, H.J.; Oh, I.H.; Lim, T.H.; Hong, S.A. Performance of proton-exchange membrane fuel cells using the catalyst-gradient electrode technique. J. Power Sources 2007, 166, 53–58. [Google Scholar] [CrossRef]
- Cetinbas, F.C.; Advani, S.G.; Prasad, A.K. Investigation of a polymer electrolyte membrane fuel cell catalyst layer with bidirectionally-graded composition. J. Power Sources 2014, 270, 594–602. [Google Scholar] [CrossRef]
- Lee, S.Y.; Kim, H.J.; Kim, K.H.; Cho, E.; Oh, I.H.; Lim, T.H. Gradient catalyst coating for a proton exchange membrane fuel cell operation under nonhumidified conditions. Electrochem. Solid-State Lett. 2007, 10, B166–B169. [Google Scholar] [CrossRef]
- Cetinbas, F.C.; Advani, S.G.; Prasad, A.K. Optimization of polymer electrolyte membrane fuel cell catalyst layer with bidirectionally-graded composition. Electrochim. Acta 2015, 174, 787–798. [Google Scholar] [CrossRef]
- Yuan, F.L.; Ryu, H.J. The synthesis, characterization, and performance of carbon nanotubes and carbon nanofibres with controlled size and morphology as a catalyst support material for a polymer electrolyte membrane fuel cell. Nanotechnology 2004, 15, S596–S602. [Google Scholar] [CrossRef]
- Sinha, P.K.; Gu, W.; Kongkanand, A.; Thompson, E. Performance of nano structured thin film (NSTF) electrodes under partially-humidified conditions fuel cells and energy conversion. J. Electrochem. Soc. 2011, 158, B831–B840. [Google Scholar] [CrossRef]
- Paulus, U.A.; Veziridis, Z.; Schnyder, B.; Kuhnke, M.; Scherer, G.G.; Wokaun, A. Fundamental investigation of catalyst utilization at the electrode/solid polymer electrolyte interface : Part I. Development of a model system. J. Electroanal. Chem. 2003, 541, 77–91. [Google Scholar] [CrossRef]
- McBreen, J. Voltammetric studies of electrodes in contact with ionomeric membranes electrochemical science and technology—Technical papers. J. Electrochem. Soc. 1985, 132, 1112–1116. [Google Scholar] [CrossRef]
- Chan, K.; Eikerling, M. Water balance model for polymer electrolyte fuel cells with ultrathin catalyst layers. Phys. Chem. Chem. Phys. 2013, 16, 2106–2117. [Google Scholar] [CrossRef] [PubMed]
- Chan, K.; Eikerling, M. impedance model of oxygen reduction in water-flooded pores of ionomer-free PEFC catalyst layers. J. Electrochem. Soc. 2012, 159, B155–B164. [Google Scholar] [CrossRef]
- Chan, K.; Eikerling, M. A pore-scale model of oxygen reduction in ionomer-free catalyst layers of PEFCs fuel cells and energy conversion. J. Electrochem. Soc. 2011, 158, B18–B28. [Google Scholar] [CrossRef]
- Debe, M.K.; Atanasoski, R.T.; Steinbach, A.J. Nanostructured Thin Film Electrocatalysts—Current Status and Future Potential. In Proceedings of the 11th Polymer Electrolyte Fuel Cell Symposium (PEFC) Under the Auspices of the 220th Meeting of the ECS, Boston, MA, USA, October 2011.
- El-Kharouf, A.; Rees, N.V.; Steinberger-Wilckens, R. Gas diffusion layer materials and their effect on polymer electrolyte fuel cell performance—Ex situ and in situ characterization. Fuel Cells 2014, 14, 735–741. [Google Scholar] [CrossRef]
- Khajeh-Hosseini-Dalasm, N.; Sasabe, T.; Tokumasu, T.; Pasaogullari, U. Effects of polytetrafluoroethylene treatment and compression on gas diffusion layer microstructure using high-resolution X-ray computed tomography. J. Power Sources 2014, 266, 213–221. [Google Scholar] [CrossRef]
- Cheema, T.A.; Kim, G.M.; Lee, C.Y.; Kwak, M.K.; Kim, H.B.; Park, C.W. Effects of composite porous gas-diffusion layers on performance of proton exchange membrane fuel cell. Int. J. Precis. Eng. Manuf. Green Technol. 2014, 1, 305–312. [Google Scholar] [CrossRef]
- Lee, K.; Kang, J.H.; Nam, J.H. Liquid water distribution in hydrophobic gas-diffusion layers with interconnect rib geometry: An invasion-percolation pore network analysis. Int. J. Hydrog. Energy 2014, 39, 6646–6656. [Google Scholar] [CrossRef]
- Mortazavi, M.; Tajiri, K. On the synthesis and characterization of silica-doped sulfonated poly-2,6-dimethyl-1,4-phenylene oxide composite membranes. J. Fuel Cell Sci. Technol. 2014, 11, 021002. [Google Scholar] [CrossRef]
- Song, W.; Yu, H.; Shao, Z.; Yi, B.; Lin, J.; Liu, N. Effect of polytetrafluoroethylene distribution in the gas diffusion layer on water flooding in proton exchange membrane fuel cells. Chin. J. Catal. 2014, 35, 468–473. [Google Scholar] [CrossRef]
- Mortazavi, M.; Tajiri, K. Effect of the PTFE content in the gas diffusion layer on water transport in polymer electrolyte fuel cells (PEFCs). J. Power Sources 2014, 245, 236–244. [Google Scholar] [CrossRef]
- Kim, S.; Jeong, B.; Hong, B.K.; Kim, T.S. Effects of hydrophobic agent content in macro-porous substrates on the fracture behavior of the gas diffusion layer for proton exchange membrane fuel cells. J. Power Sources 2014, 270, 342–348. [Google Scholar] [CrossRef]
- Koresawa, R.; Utaka, Y. Improvement of oxygen diffusion characteristic in gas diffusion layer with planar-distributed wettability for polymer electrolyte fuel cell. J. Power Sources 2014, 271, 16–24. [Google Scholar] [CrossRef]
- Joo, J.; Choun, M.; Kim, K.; Uhm, S.; Kim, Y.D.; Lee, J. Controlled water flooding of polymer electrolyte fuel cells applying superhydrophobic gas diffusion layer. Curr. Appl. Phys. 2014, 14, 1374–1379. [Google Scholar] [CrossRef]
- Latorrata, S.; Stampino, P.G.; Cristiani, C.; Dotelli, G. Novel superhydrophobic gas diffusion media for PEM fuel cells: Evaluation of performance and durability. Chem. Eng. Trans. 2014, 41, 241–246. [Google Scholar]
- Gola, M.; Sansotera, M.; Navarrini, W.; Bianchi, C.L.; Stampino, P.G.; Latorrata, S.; Dotelli, G. Perfluoropolyether-functionalized gas diffusion layers for proton exchange membrane fuel cells. J. Power Sources 2014, 258, 351–355. [Google Scholar] [CrossRef]
- Kitahara, T.; Nakajima, H.; Inamoto, M.; Shinto, K. Triple microporous layer coated gas diffusion layer for performance enhancement of polymer electrolyte fuel cells under both low and high humidity conditions. J. Power Sources 2014, 248, 1256–1263. [Google Scholar] [CrossRef]
- Huang, G.; Chang, M. Effect of gas diffusion layer with double-side microporous layer coating on proton exchange membrane fuel cell performance under different air inlet relative humidity. Int. J. Electrochem. Sci. 2014, 9, 7819–7831. [Google Scholar]
- Tanaka, S.; Shudo, T. Corrugated mesh flow channel and novel microporous layers for reducing flooding and resistance in gas diffusion layer-less polymer electrolyte fuel cells. J. Power Sources 2014, 268, 183–193. [Google Scholar] [CrossRef]
- Choi, H.; Kim, O.; Kim, M.; Choe, H.; Cho, Y.; Sung, Y. Next-generation polymer-electrolyte-membrane fuel cells using titanium foam as gas diffusion layer. ACS Appl. Mater. Interfaces 2014, 6, 7665–7671. [Google Scholar] [CrossRef] [PubMed]
- Fang, S.Y.; Huang, R.H.; Teoh, L.G.; Hsueh, K.L.; Chao, W.K.; Tsai, D.C.; Yang, T.N.; Shieu, F.S. Coating TiVCr hydrogen storage alloy on the anode gas diffusion layer of proton exchange membrane fuel cells to improve performance. J. Power Sources 2014, 268, 443–450. [Google Scholar] [CrossRef]
- Dhakate, S.; Mathur, R.; Kakati, B.; Dhami, T. Properties of graphite-composite bipolar plate prepared by compression molding technique for PEM fuel cell. Int. J. Hydrog. Energy 2007, 32, 4537–4543. [Google Scholar] [CrossRef]
- Wissler, M. Graphite and carbon powders for electrochemical applications. J. Power Sources 2006, 156, 142–150. [Google Scholar] [CrossRef]
- Lee, S.J.; Hsu, C.D.; Huang, C.H. Analyses of the fuel cell stack assembly pressure. J. Power Sources 2005, 145, 353–361. [Google Scholar] [CrossRef]
- Gregor, H. Fuel Cell Technology Handbook; CRC Press: New York, NY, USA, 2003. [Google Scholar]
- Kang, S.J.; Kim, D.O.; Lee, J.H.; Lee, P.C.; Lee, M.H.; Lee, Y. Solvent-assisted graphite loading for highly conductive phenolic resin bipolar plates for proton exchange membrane fuel cells. J. Power Sources 2010, 195, 3794–3801. [Google Scholar] [CrossRef]
- Dueramae, I.; Pengdam, A.; Rimdusit, S. J. Appl. Polym. Sci. 2013, 130, 3909–3918.
- Oh, M.; Yoon, Y.; Park, S. The electrical and physical properties of alternative material bipolar plate for PEM fuel cell system. Electrochim. Acta 2004, 50, 777–780. [Google Scholar] [CrossRef]
- Cho, E.; Jeon, U.S.; Ha, H.; Hong, S.A.; Oh, I.H. Characteristics of composite bipolar plates for polymer electrolyte membrane fuel cells. J. Power Sources 2004, 125, 178–182. [Google Scholar] [CrossRef]
- Besmann, T.M.; Klett, J.W.; Henry, J.J.; Lara, C.E. Carbon/carbon composite bipolar plate for proton exchange membrane fuel cells. J. Electrochem. Soc. 2000, 147, 4083–4086. [Google Scholar] [CrossRef]
- Cunningham, B.; Baird, D.G. The development of economical bipolar plates for fuel cells. J. Mater. Chem. 2006, 16, 4385–4388. [Google Scholar] [CrossRef]
- Taherian, R.; Nasr, M. Performance and material selection of nanocomposite bipolar plate in proton exchange membrane fuel cells. Int. J. Energy Res. 2014, 38, 94–105. [Google Scholar] [CrossRef]
- Kim, M.; Yu, H.N.; Lim, J.W.; Lee, D.G. Bipolar plates made of plain weave carbon/epoxy composite for proton exchange membrane fuel cell. Int. J. Hydrog. Energy 2012, 37, 4300–4308. [Google Scholar] [CrossRef]
- Schmittinger, W.; Vahidi, A. A review of the main parameters influencing long-term performance and durability of PEM fuel cells. J. Power Sources 2008, 180, 1–14. [Google Scholar] [CrossRef]
- Kuo, J.K.; Chen, C.K. A novel Nylon-6-S316L fiber compound material for injection molded PEM fuel cell bipolar plates. J. Power Sources 2006, 162, 207–214. [Google Scholar] [CrossRef]
- Middelman, E.; Kout, W.; Vogelaar, B.; Lenssen, J.; de Waal, E. Bipolar plates for PEM fuel cells. J. Power Sources 2003, 118, 44–46. [Google Scholar] [CrossRef]
- Karimi, S.; Fraser, N.; Roberts, B.; Foulkes, F.R. A review of metallic bipolar plates for proton exchange membrane fuel cells: Materials and fabrication methods. Adv. Mater. Sci. Eng. 2012, 2012, 1–22. [Google Scholar] [CrossRef]
- Feng, K.; Wu, G.; Li, Z.; Cai, X.; Chu, P.K. Corrosion behavior of SS316L in simulated and accelerated PEMFC environments. Int. J. Hydrog. Energy 2011, 36, 13032–13042. [Google Scholar] [CrossRef]
- Antunes, R.A.; Oliveira, M.C.L.; Ett, G.; Ett, V. Corrosion of metal bipolar plates for PEM fuel cells: A review. Int. J. Hydrog. Energy 2010, 35, 3632–3647. [Google Scholar] [CrossRef]
- Hornung, R.; Kappelt, G. Bipolar plate materials development using Fe-based alloys for solid polymer fuel cells. J. Power Sources 1998, 72, 20–21. [Google Scholar] [CrossRef]
- El-Enin, S.A.A.; Abdel-Salam, O.E.; El-Abd, H.; Amin, A.M. New electroplated aluminum bipolar plate for PEM fuel cell. J. Power Sources 2008, 177, 131–136. [Google Scholar] [CrossRef]
- Joseph, S.; McClure, J.; Sebastian, P.; Moreira, J.; Valenzuela, E. Polyaniline and polypyrrole coatings on aluminum for PEM fuel cell bipolar plates. J. Power Sources 2008, 177, 161–166. [Google Scholar] [CrossRef]
- Davies, D.P.; Adcock, P.L.; Turpin, M.; Rowen, S.J. Bipolar plate materials for solid polymer fuel cell. J. Appl. Electrochem. 2000, 30, 101–105. [Google Scholar] [CrossRef]
- Zhang, H.; Hou, M.; Lin, G.; Han, Z.; Fu, Y.; Sun, S. Performance of Ti-Ag-deposited titanium bipolar plates in simulated unitized regenerative fuel cell (URFC) environment. Int. J. Hydrog. Energy 2011, 36, 5695–5701. [Google Scholar] [CrossRef]
- Weil, K.S.; Kim, J.Y.; Xia, G.; Coleman, J.; Yang, Z.G. Boronization of nickel and nickel clad materials for potential use in polymer electrolyte membrane fuel cells. Surf. Coat. Technol. 2006, 201, 4436–4441. [Google Scholar] [CrossRef]
- Paulauskas, I.E.; Brady, M.P.; Meyer, I.H.M.; Buchanan, R.A.; Walker, L.R. Corrosion behavior of CrN, Cr 2 N and π phase surfaces on nitrided Ni-50Cr for proton exchange membrane fuel cell bipolar plates. Corros. Sci. 2006, 48, 3157–3171. [Google Scholar] [CrossRef]
- Nikam, V.V.; Reddy, R.G. Corrugated bipolar sheets as fuel distributors in PEMFC. Int. J. Hydrog. Energy 2006, 31, 1863–1873. [Google Scholar] [CrossRef]
- Nikam, V.V.; Reddy, R.G. Copper alloy bipolar plates for polymer electrolyte membrane fuel cell. Electrochim. Acta 2006, 51, 6338–6345. [Google Scholar] [CrossRef]
- Lee, S.J.; Huang, C.H.; Lai, J.J.; Chen, Y.P. Corrosion-resistant component for PEM fuel cells. J. Power Sources 2004, 131, 162–168. [Google Scholar] [CrossRef]
- Lee, S.J.; Lai, J.J.; Huang, C.H. Stainless steel bipolar plates. J. Power Sources 2005, 145, 362–368. [Google Scholar] [CrossRef]
- Cho, K.H.; Lee, W.G.; Lee, S.B.; Jang, H. Corrosion resistance of chromized 316L stainless steel for PEMFC bipolar plates. J. Power Sources 2008, 178, 671–676. [Google Scholar] [CrossRef]
- Lee, S.B.; Cho, K.H.; Lee, W.G.; Jang, H. Improved corrosion resistance and interfacial contact resistance of 316L stainless-steel for proton exchange membrane fuel cell bipolar plates by chromizing surface treatment. J. Power Sources 2009, 187, 318–323. [Google Scholar] [CrossRef]
- Feng, K.; Shen, Y.; Mai, J.; Liu, D.; Cai, X. An investigation into nickel implanted 316L stainless steel as a bipolar plate for PEM fuel cell. J. Power Sources 2008, 182, 145–152. [Google Scholar] [CrossRef]
- Feng, K.; Shen, Y.; Liu, D.; Chu, P.K.; Cai, X. Ni-Cr Co-implanted 316L stainless steel as bipolar plate in polymer electrolyte membrane fuel cells. Int. J. Hydrog. Energy 2010, 35, 690–700. [Google Scholar] [CrossRef]
- Vite, M.; Moreno-Ríos, M.; Hernández, E.A.G.; Laguna-Camacho, J.R. A study of the abrasive resistance of sputtered CrN coatings deposited on AISI 316 and AISI H13 steel substrates using steel particles. Wear 2011, 271, 1273–1279. [Google Scholar] [CrossRef]
- Cho, C.W.; Lee, Y.Z. Wear-life evaluation of CrN-coated steels using acoustic emission signals. Surf. Coat. Technol. 2000, 127, 59–65. [Google Scholar] [CrossRef]
- Barranco, J.; Barreras, F.; Lozano, A.; Maza, M. Influence of CrN-coating thickness on the corrosion resistance behaviour of aluminium-based bipolar plates. J. Power Sources 2011, 196, 4283–4289. [Google Scholar] [CrossRef]
- Lavigne, O.; Alemany-Dumont, C.; Normand, B.; Berthon-Fabry, S.; Metkemeijer, R. Thin chromium nitride PVD coatings on stainless steel for conductive component as bipolar plates of PEM fuel cells: Ex-situ and in-situ performances evaluation. Int. J. Hydrog. Energy 2012, 37, 10789–10797. [Google Scholar] [CrossRef]
- Fu, Y.; Lin, G.Q.; Hou, M.; Wu, B.; Li, H.K.; Hao, L.X. Optimized Cr-nitride film on 316L stainless steel as proton exchange membrane fuel cell bipolar plate. Int. J. Hydrog. Energy 2009, 34, 453–458. [Google Scholar] [CrossRef]
- Wu, B.; Fu, Y.; Xu, J.; Lin, G.Q.; Hou, M. Chromium nitride films on stainless steel as bipolar plate for proton exchange membrane fuel cell. J. Power Sources 2009, 194, 976–980. [Google Scholar] [CrossRef]
- Zhang, M.; Lin, G.Q.; Wu, B.; Shao, Z.G. Composition optimization of arc ion plated CrNx films on 316L stainless steel as bipolar plates for polymer electrolyte membrane fuel cells. J. Power Sources 2012, 205, 318–323. [Google Scholar] [CrossRef]
- Wang, Y.; Northwood, D.O. An investigation of the electrochemical properties of PVD TiN-coated SS410 in simulated PEM fuel cell environments. Int. J. Hydrog. Energy 2007, 32, 895–902. [Google Scholar] [CrossRef]
- Tian, R.J.; Sun, J.C. Corrosion resistance and interfacial contact resistance of TiN coated 316L bipolar plates for proton exchange membrane fuel cell. Int. J. Hydrog. Energy 2011, 36, 6788–6794. [Google Scholar] [CrossRef]
- Zhang, D.M.; Duan, L.T.; Guo, L.; Tuan, W.H. Corrosion behavior of TiN-coated stainless steel as bipolar plate for proton exchange membrane fuel cell. Int. J. Hydrog. Energy 2010, 35, 3721–3726. [Google Scholar] [CrossRef]
- Fukutsuka, T.; Yamaguchi, T.; Miyano, S.I.; Matsuo, Y.; Sugie, Y.; Ogumi, Z. Carbon-coated stainless steel as PEFC bipolar plate material. J. Power Sources 2007, 174, 199–205. [Google Scholar] [CrossRef]
- Fukutsuka, T.; Yamaguchi, T.; Matsuo, Y.; Sugie, Y.; Ogumi, Z. Improvement in corrosion properties of carbon-coated Fe-based metals for PEFC bipolar plate. Electrochemistry 2007, 75, 152–154. [Google Scholar] [CrossRef]
- Matsuo, Y.; Miyano, S.; Sugie, Y.; Fukutsuka, T. Factors affecting the formation of carbon film on the stainless steels for the bipolar plate of polymer electrolyte fuel cells. J. Fuel Cell. Sci. Technol. 2011, 8, 2279–2285. [Google Scholar] [CrossRef]
- Hovsepian, P.E.; Kok, Y.N.; Ehiasarian, A.P.; Haasch, R.; Wen, J.G.; Petrov, I. Phase separation and formation of the self-organised layered nanostructure in C/Cr coatings in conditions of high ion irradiation. Surf. Coat. Technol. 2005, 200, 1572–1579. [Google Scholar] [CrossRef]
- Yi, P.Y.; Peng, L.F.; Zhou, T.; Wu, H.; Lai, X.M. Development and characterization of multilayered Cr-C/a-C:Cr film on 316L stainless steel as bipolar plates for proton exchange membrane fuel cells. J. Power Sources 2013, 230, 25–31. [Google Scholar] [CrossRef]
- Gamburzev, S.; Appleby, A.J. Recent progress in performance improvement of the proton exchange membrane fuel cell (PEMFC). J. Power Sources 2002, 107, 5–12. [Google Scholar] [CrossRef]
- Maricle, D.; Nagle, D. Carbon Foam Fuel Cell Components. U.S. Patent 4,125,676, 14 November 1978. [Google Scholar]
- Kumar, A.; Reddy, R.G. Materials and design development for bipolar/end plates in fuel cells. J. Power Sources. 2004, 129, 62–67. [Google Scholar] [CrossRef]
- Tang, Y.; Yuan, W.; Pan, M.Q.; Wan, Z.P. Feasibility study of porous copper fiber sintered felt: A novel porous flow field in proton exchange membrane fuel cells. Int. J. Hydrog. Energy 2010, 35, 9661–9677. [Google Scholar] [CrossRef]
- Tseng, C.J.; Tsai, B.T.; Liu, Z.S.; Cheng, T.C.; Chang, W.C.; Lo, S.K. A PEM fuel cell with metal foam as flow distributor. Energy Convers. Manag. 2012, 62, 14–21. [Google Scholar] [CrossRef]
- Yuan, W.; Tang, Y.; Yang, X.; Wan, Z. Porous metal materials for polymer electrolyte membrane fuel cells—A review. Appl. Energy 2012, 94, 309–329. [Google Scholar] [CrossRef]
- Verma, A.; Pitchumani, R. Analysis and optimization of transient response of polymer electrolyte fuel cells. J. Fuel Cell. Sci. Technol. 2015, 12, 1–10. [Google Scholar] [CrossRef]
- Lin, R.; Xiong, F.; Tang, W.C.; Techer, L.; Zhang, J.M.; Ma, J.X. Investigation of dynamic driving cycle effect on the degradation of proton exchange membrane fuel cell by segmented cell technology. J. Power Sources 2014, 260, 150–158. [Google Scholar] [CrossRef]
- Xu, L.F.; Li, J.Q.; Ou Yang, M.G.; Hua, J.F.; Yang, G. Multi-mode control strategy for fuel cell electric vehicles regarding fuel economy and durability. Int. J. Hydrog. Energy 2014, 39, 2374–2389. [Google Scholar] [CrossRef]
- Kheirandish, A.; Kazemi, M.S.; Dahari, M. Dynamic performance assessment of the efficiency of fuel cell-powered bicycle: An experimental approach. Int. J. Hydrog. Energy 2014, 39, 13276–13284. [Google Scholar] [CrossRef]
- Hou, Y.P.; Yang, Z.H.; Fang, X. An experimental study on the dynamic process of PEM fuel cell stack voltage. Renew. Energy 2011, 36, 325–329. [Google Scholar] [CrossRef]
- Durst, J.; Lamibrac, A.; Charlot, F.; Dillet, J.; Castanheira, L.F.; Maranzana, G.; Dubau, L.; Maillard, F.; Chatenet, M.; Lottin, O. Degradation heterogeneities induced by repetitive start/stop events in proton exchange membrane fuel cell: Inlet vs. outlet and channel vs. land. Appl. Catal. B Environ. 2013, 138, 416–426. [Google Scholar] [CrossRef]
- Reiser, C.A.; Bregoli, L.; Patterson, T.W.; Yi, J.S.; Yang, J.D.L.; Perry, M.L.; Jarvi, T.D. A reverse-current decay mechanism for fuel cells. Electrochem. Solid State Lett. 2005, 8, A273–A276. [Google Scholar] [CrossRef]
- Shen, Q.; Hou, M.; Liang, D.; Zhou, Z.; Li, X.; Shao, Z.; Yi, B. Study on the processes of start-up and shutdown in proton exchange membrane fuel cells. J. Power Sources 2009, 189, 1114–1119. [Google Scholar] [CrossRef]
- Brightman, E.; Hinds, G. In situ mapping of potential transients during start-up and shut-down of a polymer electrolyte membrane fuel cell. J. Power Sources 2014, 267, 160–170. [Google Scholar] [CrossRef]
- Li, H.Y.; Weng, W.C.; Yan, W.M.; Wang, X.D. Transient characteristics of proton exchange membrane fuel cells with different flow field designs. J. Power Sources 2011, 196, 235–245. [Google Scholar] [CrossRef]
- Yu, Y.; Li, H.; Wang, H.J.; Yuan, X.Z.; Wang, G.J.; Pan, M. A review on performance degradation of proton exchange membrane fuel cells during startup and shutdown processes: Causes, consequences, and mitigation strategies. J. Power Sources 2012, 205, 10–23. [Google Scholar] [CrossRef]
- Hou, M.; Yu, H.M.; Yi, B.L. Current Status and Perspective of Vehicular Fuel Cell Technologies. Prog. Chem. 2009, 21, 2319–2332. [Google Scholar]
- Manokaran, A.; Pushpavanam, S.; Sridhar, P. Dynamics of anode-cathode interaction in a polymer electrolyte fuel cell revealed by simultaneous current and potential distribution measurements under local reactant-starvation conditions. J. Appl. Electrochem. 2015, 45, 353–363. [Google Scholar] [CrossRef]
- Liang, D.; Shen, Q.; Hou, M.; Shao, Z.G.; Yi, B.L. Study of the cell reversal process of large area proton exchange membrane fuel cells under fuel starvation. J. Power Sources 2009, 194, 847–853. [Google Scholar] [CrossRef]
- Verma, A.; Pitchumani, R. Effects of operating parameters on the transient response of proton exchange membrane fuel cells subject to load changes. Int. J. Hydrog. Energy 2014, 39, 19024–19038. [Google Scholar] [CrossRef]
- Park, S.; Jung, D. Effect of operating parameters on dynamic response of water-to-gas membrane humidifier for proton exchange membrane fuel cell vehicle. Int. J. Hydrog. Energy 2013, 38, 7114–7125. [Google Scholar] [CrossRef]
- Zhang, Z.Q.; Jia, L.; Wang, X.; Ba, L.M. Effects of inlet humidification on PEM fuel cell dynamic behaviors. Int. J. Energy Res. 2011, 35, 376–388. [Google Scholar] [CrossRef]
- Dubau, L.; Castanheira, L.; Maillard, F.; Chatenet, M.; Lottin, O.; Maranzana, G.; Dillet, J.; Lamibrac, A.; Perrin, J.C.; Moukheiber, E.; et al. A review of PEM fuel cell durability: Materials degradation, local heterogeneities of aging and possible mitigation strategies. Wiley Interdiscip. Rev. Energy Environ. 2014, 3, 540–560. [Google Scholar] [CrossRef]
- Yan, X.Q.; Hou, M.; Sun, L.Y.; Cheng, H.B.; Hong, Y.L.; Liang, D.; Shen, Q.; Ming, P.W.; Yi, B.L. The study on transient characteristic of proton exchange membrane fuel cell stack during dynamic loading. J. Power Sources 2007, 163, 966–970. [Google Scholar] [CrossRef]
- Yu, P.T.; Gu, W.; Makharia, R.; Wagner, F.T.; Gasteiger, H.A. The impact of carbon stability on PEM fuel cell startup and shutdown voltage degradation. ECS Trans. 2006, 3, 797–809. [Google Scholar]
- Owejan, J.E.; Yu, P.T.; Makharia, R. Mitigation of carbon corrosion in microporous layers in PEM fuel cells. ECS Trans. 2007, 11, 1049–1057. [Google Scholar]
- Huang, C.; Li, C.; Shi, G. Graphene based catalysts. Energy Environ. Sci. 2012, 5, 8848–8868. [Google Scholar] [CrossRef]
- Ioroi, T.; Senoh, H.; Yamazaki, S.I.; Siroma, Z.; Fujiwara, N.; Yasuda, K. Stability of corrosion-resistant Magnéli-phase Ti4O7-supported PEMFC catalysts at high potentials. J. Electrochem. Soc. 2008, 155, B321–B326. [Google Scholar] [CrossRef]
- Chhina, H.; Campbell, S.; Kesler, O. High surface area synthesis, electrochemical activity, and stability of tungsten carbide supported Pt during oxygen reduction in proton exchange membrane fuel cells. J. Power Sources 2008, 179, 50–59. [Google Scholar] [CrossRef]
- Zhao, S.; Wangstrom, A.E.; Liu, Y.; Rigdon, W.A.; Mustain, W.E. Stability and Activity of Pt/ITO Electrocatalyst for Oxygen Reduction Reaction in Alkaline Media. Electrochim. Acta 2015, 157, 175–182. [Google Scholar] [CrossRef]
- Balliet, R.J.; Reiser, C.A.; Patterson, T.W.; Perry, M.L. Start up System and Method for a Fuel Cell Power Plant Using a Cathode Electrode Fuel Purge. U.S. Patent 6,838,199, 4 January 2005. [Google Scholar]
- Hideaki, K. Fuel cell system and fuel cell system control method. WO2,008,146,122, 23 May 2008. [Google Scholar]
- Fellows, R. System and method for minimizing fuel cell degradation after shutdown. U.S. Patent 9,231,261, 5 January 2002. [Google Scholar]
- Falta, S.R.; Lang, M.A.; Di Fiore, D.C. Anode purge and drain valve strategy for fuel cell system. U.S. Patent 9,105,888, 11 August 2015. [Google Scholar]
- Van Dine, L.L.; Steinbugler, M.M.; Reiser, C.A.; Scheffler, G.W. Procedure for shutting down a fuel cell system having an anode exhaust recycle loop. U.S. Patent 6514635 B2, 4 February 2011. [Google Scholar]
- Ramani, M.; Bodner, D.; Miller, M.; Schnitzer, M.; Miklas, R. Methods of treating fuel cells and fuel cell systems. U.S. Patent 20050136298 A1, 23 June 2005. [Google Scholar]
- Wu, X.X.; Xu, H.F.; Lu, L.; Fu, J.; Zhao, H. The study on dynamic response performance of PEMFC with RuO2•xH2O/CNTs and Pt/C composite electrode. Int. J. Hydrog. Energy 2010, 35, 2127–2133. [Google Scholar] [CrossRef]
- He, J.; Ahn, J.; Choe, S.Y. Analysis and control of a fuel delivery system considering a two-phase anode model of the polymer electrolyte membrane fuel cell stack. J. Power Sources 2011, 196, 4655–4670. [Google Scholar] [CrossRef]
- Abdullah, M.; Idres, M. Fuel cell starvation control using model predictive technique with Laguerre and exponential weight functions. J. Mech. Sci. Technol. 2014, 28, 1995–2002. [Google Scholar] [CrossRef]
- Patterson, T.W., Jr.; Darling, R.M. Avoiding fuel starvation of anode end fuel cell. WO2013126075 A1, 29 August 2013. [Google Scholar]
- Harris, D.I.; Lang, M.A.; di Fiore, D.C. Anode Gas Composition Utilizing h2 Injection Pressure Wave Propagation Rates. U.S. Patent 2,012,028,152A1, 10 December 2014. [Google Scholar]
- Yan, X.; Hou, M.; Sun, L.; Liang, D.; Shen, Q.; Xu, H.; Ming, P.; Yi, B. AC impedance characteristics of a 2 kW PEM fuel cell stack under different operating conditions and load changes. Int. J. Hydrog. Energy 2007, 32, 4358–4364. [Google Scholar] [CrossRef]
Characteristic | Units | Status | 2020 Target |
---|---|---|---|
Maximum Oxygen crossover | mA/cm2 | <1 | 2 |
Maximum hydrogen crossover | mA/cm2 | <1.8 | 2 |
Area specific proton resistance (80 °C and water partial pressures from 25 to 45 KPa) | Ω·cm2 | 0.017 (25 KPa) | |
0.006 (44 KPa) | 0.02 | ||
Maximum operating temperature | °C | 120 | 120 |
Minimum electrical resistance | Ω·cm2 | - | 1000 |
Cost | USD/m2 | 18 | 20 |
Durability | Cycles | >20,000 | 20,000 |
Characteristic | Units | Status | 2020 Target |
---|---|---|---|
Platinum group metal (PGM) total content | g/kW rated | 0.14 | 0.125 |
PGM total loading | mg/cm2 | 0.15 | 0.125 |
Loss in catalytic (mass) activity (30,000 cycles at 0.6–1.0 V, 50 mV/s) | % | 37 | <40% |
Mass activity | A/mgPGM@900mVIR-free | 0.47–0.67 | 0.44 |
Non-PGM catalyst activity per volume of supported catalyst | A/cm3@800mVIR-free | 60 | 300 |
Characteristic | Units | Status | 2020 Target |
---|---|---|---|
Cost | USD/kW | 4 | 3 |
Weight | kg/kW | <0.4 | 0.4 |
H2 permeation coefficient | Std cm3/(s·cm2·Pa) @ 80 °C, 3 atm 100% RH | <2 × 106 | 1.3 × 10−14 |
Corrosion anode | μA/cm2 | No active peak | 1 and no active peak |
Corrosion cathode | μA/cm2 | <0.1 | <1 |
Electrical Conductivity | S/cm | >100 | 100 |
Area specific Resistance | Ohm·cm2 | 0.006 | 0.01 |
Flexural Strength | MPa | >34 (carbon plate) | 25 |
Brand and Manufacturer | EW Value/g·mol−1 | Thickness/μm |
---|---|---|
Nafion® (Dupont) | 1100–1200 | 25–250 |
Dow membrane (Dow Chemical) | 800 | 125 |
Flemion (Asahi Glass) | 1000 | 50–120 |
Aciplex (Asahi Chemical) | 1000–1200 | 25–100 |
3M Ionomer (3M) | 600–800 | 14–20 |
Aquivion (Solvay Solexis) | 700–900 | 30–100 |
Fumapem® F (Fuma Tech) | 700–1000 | 19–180 |
Brand and Manufacturer | Total Thickness/μm | Resistance/mΩ·cm2 | Areal Density/g·m−2 |
---|---|---|---|
SGL Group (Sigracet® GDL) | 105–325 | 4–12 | 40–125 |
Freudenberg (H series GDL) | 150–290 | 4–10 | 65–150 |
Engineered Fibers Technology (SpectracarbTM GDL) | 127–381 | - | - |
AvCarb (AvCarb GDL) | 184–330 | 14–17 | 60–185 |
FuelCellsEtc (ELAT®GDL) | 406–490 | 0.1–0.17 | 130–250 |
Toray Company (Toray Carbon Paper) | 110–370 | 4–80 | - |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, C.; Wang, S.; Peng, L.; Zhang, J.; Shao, Z.; Huang, J.; Sun, C.; Ouyang, M.; He, X. Recent Progress on the Key Materials and Components for Proton Exchange Membrane Fuel Cells in Vehicle Applications. Energies 2016, 9, 603. https://doi.org/10.3390/en9080603
Wang C, Wang S, Peng L, Zhang J, Shao Z, Huang J, Sun C, Ouyang M, He X. Recent Progress on the Key Materials and Components for Proton Exchange Membrane Fuel Cells in Vehicle Applications. Energies. 2016; 9(8):603. https://doi.org/10.3390/en9080603
Chicago/Turabian StyleWang, Cheng, Shubo Wang, Linfa Peng, Junliang Zhang, Zhigang Shao, Jun Huang, Chunwen Sun, Minggao Ouyang, and Xiangming He. 2016. "Recent Progress on the Key Materials and Components for Proton Exchange Membrane Fuel Cells in Vehicle Applications" Energies 9, no. 8: 603. https://doi.org/10.3390/en9080603
APA StyleWang, C., Wang, S., Peng, L., Zhang, J., Shao, Z., Huang, J., Sun, C., Ouyang, M., & He, X. (2016). Recent Progress on the Key Materials and Components for Proton Exchange Membrane Fuel Cells in Vehicle Applications. Energies, 9(8), 603. https://doi.org/10.3390/en9080603