DMFC Performance of Polymer Electrolyte Membranes Prepared from a Graft-Copolymer Consisting of a Polysulfone Main Chain and Styrene Sulfonic Acid Side Chains
Abstract
:1. Introduction
2. Experimental Section
2.1. Preparation of Polymer Electrolyte Membranes for DMFCs
2.2. Measurement of Water Uptake
2.3. Measurement of Ion-Exchange Capacity (IEC)
2.4. Measurement of Proton Conductivity
2.5. Measurement of Methanol Permeability
2.6. Fabrication of Membrane Electrode Assemblis (MEAs) and Evaluation of Single-Cell Performance
3. Results and Discussion
3.1. Characterization of the Synthesized Polymer and Membrane
3.2. Water Uptake, Proton Conductivity, and Methanol Permeability of the PEMs
3.3. Proton Permselectivity of the PEMs
3.4. Single Cell Performance of DMFC as a Function of MeOH Concentration
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Hampson, N.A.; Wilars, M.J.; McNicol, B.D. The methanol-air fuel cell: A selective review of methanol oxidation mechanisms at platinum electrodes in acid electrolytes. J. Power Sources 1979, 4, 191–201. [Google Scholar] [CrossRef]
- Ren, X.; Wilson, M.S.; Gottefeld, S. High performance direct methanol polymer electrolyte fuel cells. J. Electrochem. Soc. 1996, 143, L12–L15. [Google Scholar] [CrossRef]
- Rikukawa, M.; Sanui, K. Proton-conducting polymer electrolyte membranes based on hydrocarbon polymers. Prog. Polym. Sci. 2000, 25, 1463–1502. [Google Scholar] [CrossRef]
- Smitha, B.; Sridhar, S.; Khan, A.A. Solid polymer electrolyte membranes for fuel cell applications—A review. J. Membr. Sci. 2005, 259, 10–26. [Google Scholar] [CrossRef]
- Bogolowski, N.; Drillet, J.-F. Appropriate balance between methanol yield and power density in portable direct methanol fuel cell. Chem. Eng. J. 2015, 270, 91–100. [Google Scholar] [CrossRef]
- Lin, J.; Wu, P.-H.; Wycisk, R.; Pintauro, P.N.; Shi, Z. Properties of water in prestretched recast Nafion. Macromolecules 2008, 41, 4284–4289. [Google Scholar] [CrossRef]
- Lin, J.; Wu, P.-H.; Wycisk, R.; Trivisonno, A.; Pintauro, P.N. Direct methanol fuel cell operation with pre-stretched recast Nafion. J. Power Sources 2008, 183, 491–497. [Google Scholar] [CrossRef]
- Park, Y.-C.; Peck, D.-H.; Kim, S.-K.; Lim, S.; Jung, D.-H.; Lee, D.-Y. Operation of a direct methanol fuel cell stack by self-heating at low temperatures. Int. J. Hydrog. Energy 2011, 36, 5655–5665. [Google Scholar] [CrossRef]
- Yang, W.W.; Zhao, T.S.; Wu, Q.X. Modeling of a passive DMFC operating with neat methanol. Int. J. Hydrog. Energy 2011, 36, 6899–6913. [Google Scholar] [CrossRef]
- Elabd, Y.A.; Napadensky, E.; Sloan, J.M. Triblock copolymer ionomer membranes Part I. Methanol and proton transport. J. Membr. Sci. 2003, 217, 227–242. [Google Scholar] [CrossRef]
- Kim, Y.S.; Sumner, M.J.; Harrison, W.L.; Riffle, J.S.; McGrath, J.E.; Pivovar, B.S. Direct Methanol Fuel Cell Performance of Disulfonated Polyarylene ether benzonitrile Copolymers. Electrochem. Soc. 2004, 151, A2150–A2156. [Google Scholar] [CrossRef]
- Fu, Y.Z.; Manthiram, A. Synthesis and characterization of sulfonated polysulfone membranes for direct methanol fuel cells. J. Power Sources 2006, 157, 222–225. [Google Scholar] [CrossRef]
- Hill, M.L.; Kim, Y.S.; Einsla, B.R.; McGrath, J.E. Zirconium hydrogen phosphate/disulfonated poly(arylene ether sulfone) copolymer composite membranes for proton exchange membrane fuel cells. J. Membr. Sci. 2006, 283, 102–108. [Google Scholar] [CrossRef]
- Lufrano, F.; Baglio, V.; Staiti, P.; Arico, A.S.; Antonucci, V. Polymer electrolytes based on sulfonated polysulfone for direct methanol fuel cells. J. Power Sources 2008, 179, 34–41. [Google Scholar] [CrossRef]
- Kim, Y.S.; Kim, D.S.; Liu, B.; Guiver, M.D.; Pivovar, B.S. Copoly(arylene ether nitrile)s-High-Performance Polymer Electrolytes for Direct Methanol Fuel Cells. J. Electrochem. Soc. 2008, 155, B21–B26. [Google Scholar] [CrossRef]
- Li, L.; Zhang, J.; Wang, Y.X. Sulfonated poly(ether ether ketone) membranes for direct methanol fuel cell. J. Membr. Sci. 2013, 226, 159–167. [Google Scholar] [CrossRef]
- Silva, V.S.; Ruffmann, B.; Vetter, S.; Boaventura, M.; Mendes, A.M.; Madeira, L.M.; Nunes, S.P. Mass transport of direct methanol fuel cell species in sulfonated poly(ether ether ketone) membranes. Electrochim. Acta 2006, 51, 3699–3706. [Google Scholar] [CrossRef]
- Yin, Y.; Fang, J.H.; Cui, Y.F.; Tanaka, K.; Kita, H.; Okamoto, K. Synthesis, proton conductivity and methanol permeability of a novel sulfonated polyimide from 3-(20,40-diaminophenoxy) propane sulfonic acid. Polymer 2003, 44, 4509–4518. [Google Scholar] [CrossRef]
- Miyatake, K.; Zhou, H.; Matsuo, T.; Uchida, H.; Watanabe, M. Proton Conductive Polyimide Electrolytes Containing Trifluoromethyl Groups: Synthesis, Properties, and DMFC Performance. Macromolecules 2004, 37, 4961–4966. [Google Scholar] [CrossRef]
- Einsla, B.R.; Kim, Y.S.; Hickner, M.A.; Hong, Y.T.; Hill, M.L.; Pivovar, B.S.; McGrath, J.E. Sulfonated naphthalene dianhydride based polyimide copolymers for proton-exchange-membrane fuel cells II. Membrane properties and fuel cell performance. J. Membr. Sci. 2005, 255, 141–148. [Google Scholar] [CrossRef]
- Okamoto, K.; Yin, Y.; Yamada, O.; Islam, M.N.; Honda, T.; Mishima, T.; Suto, Y.; Tanaka, K.; Kita, H. Methanol permeability and proton conductivity of sulfonated co-polyimide membranes. J. Membr. Sci. 2005, 258, 115–122. [Google Scholar] [CrossRef]
- Yin, Y.; Yamada, O.; Tanaka, K.; Okamoto, K. On the Development of Naphthalene-Based Sulfonated Polyimide Membranes for Fuel Cell Applications. Polym. J. 2006, 38, 197–219. [Google Scholar] [CrossRef]
- Song, J.M.; Miyatake, K.; Uchida, H.; Watanabe, M. Investigation of direct methanol fuel cell performance of sulfonated polyimide membrane. Electrochim. Acta 2006, 51, 4497–4504. [Google Scholar] [CrossRef]
- Zhai, F.X.; Guo, X.X.; Fang, J.H.; Xu, H.J. Synthesis and properties of novel sulfonated polyimide membranes for direct methanol fuel cell application. J. Membr. Sci. 2007, 296, 102–109. [Google Scholar] [CrossRef]
- Zhang, M.F.; Russell, T.P. Graft Copolymers from Poly(vinylidene fluoride-co-chlorotrifluoroethylene) via Atom Transfer Radical Polymerization. Macromolecules 2006, 39, 3531–3539. [Google Scholar] [CrossRef]
- Tsang, E.M.W.; Zhang, Z.; Shi, Z.; Soboleva, T.; Holdcroft, S. Considerations of Macromolecular Structure in the Design of Proton Conducting Polymer Membranes: Graft versus Diblock Polyelectrolytes. J. Am. Chem. Soc. 2007, 129, 15106–15107. [Google Scholar] [CrossRef] [PubMed]
- Higa, M.; Yaguchi, K.; Kitani, R. All solid-state polymer electrolytes prepared from a graft copolymer consisting of a polyimide main chain and poly(ethylene oxide) based side chains. Electrochim. Acta 2010, 55, 1380–1384. [Google Scholar] [CrossRef]
- Xu, F.J.; Zhao, J.P.; Kang, E.T.; Neoh, K.G. Surface functionalization of polyimide films via chloromethylation and surface-initiated atom transfer radical polymerization. Ind. Eng. Chem. Res. 2007, 46, 4866–4873. [Google Scholar] [CrossRef]
- Kakihana, Y.; Ogawa, Y.; Takamura, K.; Hara, R.; Higa, M. Characterization of cation-exchange membranes prepared from agraft-copolymer consisting of a polysulfone main chain and styrenesulfonic acid side chains. Electrochim. Acta 2014, 129, 120–126. [Google Scholar] [CrossRef]
- Higa, M.; Sugita, M.; Maesowa, S.-I.; Endo, N. Poly(vinyl alcohol)-based polymer electrolyte membranes for direct methanol fuel cells. Electrochim. Acta 2010, 55, 1445–1449. [Google Scholar] [CrossRef]
- Hu, Z.; Ogou, T.; Yoshino, M.; Yamada, O.; Kita, H.; Okamoto, K. Direct methanol fuel cell performance of sulfonated polyimide membranes. J. Power Sources 2009, 194, 674–682. [Google Scholar] [CrossRef]
- Qiao, J.; Hamaya, T.; Okada, T. New highly proton-conducting membrane poly(vinyl- pyrrolidone)(PVP) modified poly(vinyl alcohol)/2-acrylamido-2-methyl-1-propanesulfonic acid (PVA–PAMPS) for low temperature direct methanol fuel cells (DMFCs). Polymer 2005, 46, 10809–10816. [Google Scholar] [CrossRef]
- Tsang, E.M.W.; Zhang, Z.; Yang, A.C.C.; Shi, Z.; Peckham, T.J.; Narimani, R.; Frisken, B.J.; Holdcroft, S. Nanostructure, Morphology, and Properties of Fluorous Copolymers Bearing Ionic Grafts. Macromolecules 2009, 42, 9467–9480. [Google Scholar] [CrossRef]
- Ahmad, H.; Kamarudin, S.K.; Hasran, U.A.; Saud, W.R.W. Overview of hybrid membranes for direct-methanol fuel-cell applications. Int. J. Hydrog. Energy 2010, 35, 2160–2175. [Google Scholar] [CrossRef]
- Lufrano, F.; Baglio, V.; Staiti, P.; Antonucci, V.; Arico’, A.S. Performance analysis of polymer electrolyte membranes for direct methanol fuel cells. J. Power Sources 2013, 243, 519–534. [Google Scholar] [CrossRef]
- Zhao, T.S.; Yang, W.W.; Chen, R.; Wu, Q.X. Towards operating direct methanol fuel cells with highly concentrated fuel. J. Power Sources 2010, 195, 3451–3462. [Google Scholar] [CrossRef]
- Chen, K.; Hu, Z.; Endo, N.; Fang, J.; Higa, M.; Okamoto, K. Sulfonated polyimides bearing benzimidazole groups for direct methanol fuel cell applications. J. Membr. Sci. 2010, 351, 214–221. [Google Scholar] [CrossRef]
- Higa, M.; Hatemura, K.; Sugita, M.; Maesowa, S.; Nishimura, M.; Endo, N. Performance of passive direct methanol fuel cell with poly(vinyl alcohol)-based polymer electrolyte membranes. Int. J. Hydrog. Energy 2012, 37, 6292–6301. [Google Scholar] [CrossRef]
- Higa, M.; Feng, S.; Endo, N.; Kakihana, Y. Characteristics and direct methanol fuel cell performance of polymer electrolyte membranes prepared from poly(vinyl alcohol-b-styrene sulfonic acid). Electrochim. Acta 2015, 153, 83–89. [Google Scholar] [CrossRef]
MI | PSF (g) | cmCMME (mmol) | cmZnO (mmol) | Tr 1 (min) | cpcm 2 (mol %) |
---|---|---|---|---|---|
CM-PSF-1 | 6.0 | 3.3 | 1.28 | 180 | 1.81 |
CM-PSF-2 | 6.0 | 13.2 | 1.28 | 180 | 8.42 |
CM-PSF-3 | 6.0 | 19.8 | 1.28 | 180 | 15.3 |
Graft copolymer | cpcm 1 (mol %) | EtSS (mmol) | Bpy (mmol) | CuCl (mmol) |
---|---|---|---|---|
PSF-g-PSSA-1 | 1.81 | 1.1 | 0.22 | 0.11 |
PSF-g-PSSA-2 | 1.81 | 2.2 | 0.22 | 0.11 |
PSF-g-PSSA-3 | 8.42 | 1.1 | 1.02 | 0.51 |
PSF-g-PSSA-4 | 8.42 | 2.2 | 1.02 | 0.51 |
PSF-g-PSSA-5 | 15.3 | 1.1 | 1.83 | 0.92 |
PSF-g-PSSA-6 | 15.3 | 2.2 | 1.83 | 0.92 |
PEM | d (μm) | IEC (meq/g) | WU (%) | σ (mS/cm) | PL/L (10−7 cm2/s) | φ (103 S·s/cm3) |
---|---|---|---|---|---|---|
SF-1 | 60 | 0.43 | 36 | 0.024 | 0.038 | 6.5 |
SF-2 | 60 | 0.83 | 144 | 27.1 | 5.6 | 48.6 |
SF-3 | 30 | 0.61 | 78 | 3.5 | 7.3 | 4.8 |
SF-4 | 167 | 1.55 | 283 | 33.6 | 21.7 | 15.5 |
SF-5 | 50 | 0.64 | 111 | 3.7 | 9.5 | 3.9 |
SF-6 | 70 | 1.52 | 386 | 103.4 | 46.7 | 22.2 |
PEM | d1 (μm) | IEC (meq/g) | σ 2 (mS/cm) | Cell Temp. (°C) Oxidant | CMeOH | OCV (V) | PDmax (mW/cm2) | PDMFC3 (10−6 cm2/s) | qDMFC 4(μmol/cm2·s) | Ref. |
---|---|---|---|---|---|---|---|---|---|---|
SF-2 | 60 | 0.83 | 27.1 | 60 | 9 M (30 wt %) | 0.62 | 16.1 | 0.20 | 0.68 | |
(O2) | (5.6) | |||||||||
60 | 15.6 M (50 wt %) | 0.59 | 11.9 | - | - | |||||
(O2) | ||||||||||
SF-5 | 50 | 0.64 | 3.7 | 60 | 9 M (30 wt %) | 0.62 | 42.1 | 0.46 | 1.6 | |
(O2) | (9.5) | |||||||||
60 | 15.6 M (50 wt %) | 0.60 | 32.8 | 0.46 | 2.6 | |||||
(O2) | ||||||||||
SF-6 | 70 | 1.52 | 103.4 | 60 | 9 M (30 wt %) | 0.48 | 68.4 | 1.0 | 2.4 | |
(O2) | (4.7) | |||||||||
60 | 15.6 M (50 wt %) | 0.48 | 58.2 | 1.0 | 3.9 | |||||
(O2) | ||||||||||
NHDTA-BAPBDS/BAPB (1/1) | 53 | 1.51 | 64 | 60 | 9 M (30 wt %) | 0.61 | 83 | 0.52 | 0.92 | [31] |
(O2) | ||||||||||
60 | 15.6 M (50 wt %) | 0.61 | 70 | 0.52 | 1.53 | |||||
(O2) | ||||||||||
Nafion112 | 55 | 0.91 | 136 | 60 | 9 M (30 wt %) | 0.53 | 36 | 1.9 | 3.2 | [31] |
(O2) | ||||||||||
NHDTA-BAPBDS/p-DABI (2/1) | 54 | 1.77 | 75 | 60 | 9 M (30 wt %) | 0.60 | 55 | 0.48 | 0.82 | [37] |
(O2) | ||||||||||
PVA-AMPS | 0.30 | 12.9 (25 °C) | 25 | 20 M | 0.36 | 1.6 | (0.1) | - | [38] | |
(air) | ||||||||||
Nafion117 | 0.91 | 90 (25 °C) | 25 | 20 M | 0.05 | 0 | (3.0) | - | [38] | |
(air) | ||||||||||
PVA-b-SSA | 62 | 0.95 | 14.0 | 60 | 9 M | 0.54 | 17.8 | (0.89) | - | [39] |
(O2) | ||||||||||
Nafion115 | 140 | 0.91 | 90 | 60 | 9 M | 0.41 | 9.6 | (3.0) | - | [39] |
(O2) |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Endo, N.; Ogawa, Y.; Ukai, K.; Kakihana, Y.; Higa, M. DMFC Performance of Polymer Electrolyte Membranes Prepared from a Graft-Copolymer Consisting of a Polysulfone Main Chain and Styrene Sulfonic Acid Side Chains. Energies 2016, 9, 658. https://doi.org/10.3390/en9080658
Endo N, Ogawa Y, Ukai K, Kakihana Y, Higa M. DMFC Performance of Polymer Electrolyte Membranes Prepared from a Graft-Copolymer Consisting of a Polysulfone Main Chain and Styrene Sulfonic Acid Side Chains. Energies. 2016; 9(8):658. https://doi.org/10.3390/en9080658
Chicago/Turabian StyleEndo, Nobutaka, Yoshiaki Ogawa, Kohei Ukai, Yuriko Kakihana, and Mitsuru Higa. 2016. "DMFC Performance of Polymer Electrolyte Membranes Prepared from a Graft-Copolymer Consisting of a Polysulfone Main Chain and Styrene Sulfonic Acid Side Chains" Energies 9, no. 8: 658. https://doi.org/10.3390/en9080658
APA StyleEndo, N., Ogawa, Y., Ukai, K., Kakihana, Y., & Higa, M. (2016). DMFC Performance of Polymer Electrolyte Membranes Prepared from a Graft-Copolymer Consisting of a Polysulfone Main Chain and Styrene Sulfonic Acid Side Chains. Energies, 9(8), 658. https://doi.org/10.3390/en9080658