Spray-Drying to Get Spin-Crossover Materials
Abstract
:1. Introduction
2. Results and Discussion
2.1. Opening Statement on the Tuning of Spray-Drying Parameters
2.2. The SCO Coordination Polymer [Fe(NH2trz)3]Br2·nH2O
2.3. The SCO Coordination Polymer [Fe(NH2trz)3](BF4)2
2.4. The SCO Coordination Polymer [Fe(Htrz)2(trz)](BF4)2
2.5. The SCO Mononuclear Complex [Fe(bpp)2](NCS)2·2H2O
3. Materials and Methods
3.1. Syntheses by Spray-Drying
3.2. Physical Characterizations
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Gütlich, P.; Gaspar, A.B.; Garcia, Y. Spin state switching in iron coordination compounds. Beilstein J. Org. Chem. 2013, 9, 342–391. [Google Scholar] [CrossRef] [PubMed]
- Halcrow, M.A. (Ed.) Spin-Crossover Materials: Properties and Applications; John Wiley & Sons: Chichester, UK, 2013.
- Brooker, S. Spin crossover with thermal hysteresis: Practicalities and lessons learnt. Chem. Soc. Rev. 2015, 44, 2880–2892. [Google Scholar] [CrossRef] [PubMed]
- Bousseksou, A.; Molnár, G.; Salmon, L.; Nicolazzi, W. Molecular spin crossover phenomenon: Recent achievements and prospects. Chem. Soc. Rev. 2011, 40, 3313–3335. [Google Scholar] [CrossRef] [PubMed]
- Gamez, P.; Sanchez Costa, J.; Quesada, M.; Aromi, G. Iron Spin-Crossover compounds: From fundamental studies to practical applications. Dalton Trans. 2009, 7845–7853. [Google Scholar] [CrossRef] [PubMed]
- Dugay, J.; Giménez-Marqués, M.; Kozlova, T.; Zandbergen, H.W.; Coronado, E.; van der Zant, H.S.J. Spin Switching in Electronic Devices Based on 2D Assemblies of Spin-Crossover Nanoparticles. Adv. Mater. 2015, 27, 1288–1293. [Google Scholar] [CrossRef] [PubMed]
- Grosjean, A.; Daro, N.; Pechev, S.; Moulet, L.; Etrillard, C.; Chastanet, G.; Guionneau, P. The spin-crossover phenomenon at the coherent-domains scale in 1D polymeric powders: Evidence for a structural fatigability. Eur. J. Inorg. Chem. 2016, 1961–1966. [Google Scholar] [CrossRef]
- Kahn, O.; Jay Martinez, C. Spin-transition polymers: From molecular materials toward memory devices. Science 1998, 279, 44–48. [Google Scholar] [CrossRef]
- Létard, J.F.; Guionneau, P.; Goux-Capes, L. Towards spin crossover applications. Top. Curr. Chem. 2004, 235, 221–249. [Google Scholar]
- Linares, J.; Codjovi, E.; Garcia, Y. Pressure and temperature spin crossover sensors with optical detection. Sensors 2012, 12, 4479–4492. [Google Scholar] [CrossRef] [PubMed]
- Gentili, D.; Demitri, N.; Schäfer, B.; Liscio, F.; Bergenti, I.; Ruani, G.; Ruben, M.; Cavallini, M. Multi-modal sensing in spin crossover compounds. J. Mater. Chem. C 2015, 3, 7836–7844. [Google Scholar] [CrossRef]
- Manrique-Juárez, M.D.; Rat, S.; Salmon, S.; Molnár, G.; Quintero, C.M.; Nicu, L.; Shepherd, H.J.; Bousseksou, A. Switchable molecule-based materials for micro- and nanoscale actuating applications: Achievements and prospects. Coord. Chem. Rev. 2016, 308, 395–408. [Google Scholar] [CrossRef]
- Cavallini, M.; Melucci, M. Organic Materials for Time−Temperature Integrator Devices. ACS Appl. Mater. Interfaces 2015, 7, 16897–16906. [Google Scholar] [CrossRef] [PubMed]
- Forestier, T.; Mornet, S.; Daro, N.; Nishihara, T.; Mouri, S.I.; Tanaka, K.; Fouché, O.; Freysz, E.; Létard, J.F. Nanoparticles of iron(II) spin-crossover. Chem. Commun. 2008, 4327–4329. [Google Scholar] [CrossRef] [PubMed]
- Coronado, E.; Galán-Mascarós, J.R.; Monrabal-Capilla, M.; Garciá-Martinez, J.; Pardo-Ibañez, P. Bistable spin-crossover nanoparticles showing magnetic thermal hysteresis near room temperature. Adv. Mater. 2007, 19, 1359–1361. [Google Scholar] [CrossRef]
- Aromí, G.; Barrios, L.A.; Roubeau, O.; Gamez, P. Triazoles and tetrazoles: Prime ligands to generate remarkable coordination materials. Coord. Chem. Rev. 2011, 255, 485–546. [Google Scholar] [CrossRef]
- Roubeau, O. Triazole-based one-dimensional spin-crossover coordination polymers. Chem. Eur. J. 2012, 18, 15230–15244. [Google Scholar] [CrossRef] [PubMed]
- Lavrenova, L.G.; Shakirova, O.G. Spin crossover and thermochromism of iron(II) coordination compounds with 1,2,4-triazoles and tris(pyrazol-1-yl)methanes. Eur. J. Inorg. Chem. 2013, 670–682. [Google Scholar] [CrossRef]
- Garcia, Y.; Renz, F.; Gütlich, P. LIESST Effect in Fe(II) 1,2,4-Triazole Chains. Curr. Inorg. Chem. 2016, 6, 4–9. [Google Scholar] [CrossRef]
- Grosjean, A.; Négrier, P.; Bordet, P.; Etrillard, C.; Mondieig, D.; Pechev, S.; Lebraud, E.; Létard, J.F.; Guionneau, P. Crystal structures and spin crossover in the polymeric material [Fe(Htrz)2(trz)](BF4) including coherent-domain size reduction effects. Eur. J. Inorg. Chem. 2013, 2013, 796–802. [Google Scholar] [CrossRef]
- Guionneau, P. Crystallography and spin-crossover. A view of breathing materials. Dalton Trans. 2014, 43, 382–393. [Google Scholar] [CrossRef] [PubMed]
- Grosjean, A.; Daro, N.; Kauffmann, B.; Kaiba, A.; Létard, J.F.; Guionneau, P. The 1-D polymeric structure of the [Fe(NH2trz)3](NO3)2·nH2O (with n = 2) spin crossover compound proven by single crystal investigations. Chem. Commun. 2011, 47, 12382–12384. [Google Scholar] [CrossRef] [PubMed]
- Grosjean, A. 1D Polymeric Spin-Transition Materials: Multi Scale Structural Investigations. Ph.D. Thesis, University of Bordeaux, Bordeaux, France, December 2013. [Google Scholar]
- Raillet, A.P. Propriétés Structurales, Magnétiques et Optiques de Composes de Coordination à Base de 1,2,4-Triazoles. Ph.D. Thesis, University Catholique de Louvain, Louvain-la-Neuve, Belgium, February 2016. [Google Scholar]
- Forestier, T.; Kaiba, A.; Pechev, S.; Denux, D.; Guionneau, P.; Etrillard, C.; Daro, N.; Freysz, E.; Létard, J.F. Nanoparticles of [Fe(NH2-trz)3]Br2·3H2O (NH2-trz = 4-amino-1,2,4-triazole) prepared by the reverse micelle technique: Influence of particle and coherent domain size on spin-crossover properties. Chem. Eur. J. 2009, 15, 6122–6130. [Google Scholar] [CrossRef] [PubMed]
- Bartual-Murgui, C.; Natividad, E.; Roubeau, O. Critical assessment of the nature and properties of Fe(II) triazole-based spin-crossover nanoparticles. J. Mater. Chem. C 2015, 3, 7916–7924. [Google Scholar] [CrossRef]
- Moulet, L.; Daro, N.; Etrillard, C.; Létard, J.F.; Grosjean, A.; Guionneau, P. Rational Control of Spin-Crossover Particle Sizes: From Nano- to Micro-Rods of [Fe(Htrz)2(trz)](BF4). Magnetochemistry 2016, 2, 10. [Google Scholar] [CrossRef]
- Qiu, D.; Gu, L.; Sun, X.-L.; Ren, D.-H.; Gu, Z.-G.; Lia, Z. SCO@SiO2@Au core–shell nanomaterials: Enhanced photo-thermal plasmonic effect and spin-crossover properties. R. Soc. Chem. Adv. 2014, 4, 61313–63319. [Google Scholar] [CrossRef]
- Quintero, C.M.; Felix, G.; Suleimanov, I.; Sanchez-Costa, J.; Molnar, G.; Salmon, L.; Nicolazzi, W.; Bousseksou, A. Hybrid spin-crossover nanostructures. Beilstein J. Nanotechnol. 2014, 5, 2230–2239. [Google Scholar] [CrossRef] [PubMed]
- Moulet, L.; Daro, N.; Mornet, S.; Vilar-Vidal, N.; Chastanet, G.; Guionneau, G. Grafting of gold onto spin-crossover nanoparticles: SCO@Au. Chem. Commun. 2016, 52, 13213–13216. [Google Scholar] [CrossRef] [PubMed]
- Zhao, T.; Cuignet, L.; Dîrtu, M.M.; Wolff, M.; Spasojevic, V.; Boldog, I.; Rotaru, A.; Garcia, Y.; Janiak, C. Water effect on the spin-transition behavior of Fe(II) 1,2,4-triazole 1D chains embedded in pores of MCM-41. J. Mater. Chem. C 2015, 3, 7802–7812. [Google Scholar] [CrossRef]
- Wang, Y.X.; Qiu, D.; Li, Z.-H.; Gu, Z.-G.; Ren, X.; Li, Z. Resin-Assisted Constructive Synthesis of Spin-Crossover Nanorod Arrays. Eur. J. Inorg. Chem. 2016, 2016, 4581–4585. [Google Scholar] [CrossRef]
- Carné-Sanchez, A.; Imaz, I.; Cano-Sarabia, M.; Maspoch, D. A spray-drying strategy for synthesis of nanoscale metal-organic frameworks and their assembly into hallow superstructures. Nat. Chem. 2013, 5, 203–211. [Google Scholar] [CrossRef] [PubMed]
- Nandiyanto, A.B.D.; Okuyama, K. Progress in developing spray-drying methods for the production of controlled morphology particles: From the nanometer to submicrometer size ranges. Adv. Powder Technol. 2011, 22, 1–19. [Google Scholar] [CrossRef]
- Okuyama, K.; Lenggoro, I.W. Preparation of nanoparticles via spray route. Chem. Eng. Sci. 2003, 58, 537–547. [Google Scholar] [CrossRef]
- Vehring, R. Pharmaceutical particle engineering via spray drying. Pharm. Res. 2008, 25, 999–1022. [Google Scholar] [CrossRef] [PubMed]
- Okuyama, K.; Abdullah, M.; Lenggora, I.W.; Iskandar, F. Preparation of functional nanostructured particles by spray drying. Adv. Powder Technol. 2006, 17, 587–611. [Google Scholar] [CrossRef]
- Julian-Lopez, B.; Boissiere, C.; Chanéac, C.; Grosso, D.; Vasseur, S.; Miraux, S.; Duguet, E.; Sanchez, C. Mesoporous maghemite-organosilica microspheres: A promising route towards multifunctional platforms for smart diagnosis and therapy. J. Mater. Chem. 2007, 17, 1563–1569. [Google Scholar] [CrossRef]
- Zhou, G.W.; Wang, J.; Gao, P.; Yang, X.; He, Y.-S.; Liao, X.-Z.; Yang, J.; Ma, Z.-F. Facile Spray Drying Route for the Three-Dimensional Graphene-Encapsulated Fe2O3 Nanoparticles for Lithium Ion Battery Anodes. Ind. Eng. Chem. Res. 2013, 52, 1197–1204. [Google Scholar] [CrossRef]
- Cavallini, M. Status and perspectives in thin films and patterning of spin crossover compounds. Phys. Chem. Chem. Phys. 2012, 14, 11867–11876. [Google Scholar] [CrossRef] [PubMed]
- Lavrenova, L.G.; Ikorskii, V.N.; Varnek, V.A.; Oglezneva, I.M.; Larionov, S.V. Spin Transitions in Coordination Compounds of Iron(II) with Triazoles. Koord. Khim. 1990, 16, 654–661. [Google Scholar]
- Kahn, O.; Kröber, J.; Jay, C. Spin transition molecular materials for displays and data recording. Adv. Mater. 1992, 4, 718–728. [Google Scholar] [CrossRef]
- Dîrtu, M.M.; Rotaru, A.; Gillard, A.; Linares, J.; Codjovi, E.; Tinant, B.; Garcia, Y. Prediction of the Spin Transition Temperature in FeII One-Dimensional Coordination Polymers: An Anion Based Database. Inorg. Chem. 2009, 48, 7838–7852. [Google Scholar] [CrossRef] [PubMed]
- Daro, N. Polymères de Fe(II) à Transition de Spin à Base de Triazole: Synthèse, Etude des Propriétés et Nouvelles Potentialités. Ph.D. Thesis, University of Bordeaux, Bordeaux, France, December 2013. [Google Scholar]
- Haasnoot, J.G.; Vos, G.; Groeneveld, W.L. 1,2,4-triazole complexes, III Complexes of Transition Metal(II) Nitrates and Fluoroborates. Naturforsch 1977, 32b, 1421–1430. [Google Scholar] [CrossRef]
- Krober, J.; Audière, J.P.; Claude, R.; Codjovi, E.; Kahn, O.; Haasnoot, J.G.; Grolière, F.; Jay, C.; Bousseksou, A.; Linarès, J.; et al. Spin Transitions and Thermal Hystereses in the Molecular—Based Materials [Fe(Htrz)2(trz)](BF4) and [Fe(Htrz)3](BF4)2·H20 (Htrz = 1,2,4–4H-triazole; trz =1,2,4-triazolato). Chem. Mater. 1994, 6, 1404–1412. [Google Scholar] [CrossRef]
- Manrique-Juárez, M.D.; Suleimanov, I.; Hernández, E.M.; Salmon, L.; Molnár, G.; Bousseksou, A. In Situ AFM Imaging of Microstructural Changes Associated with the Spin Transition in [Fe(htrz)2(trz)](BF4) Nanoparticles. Materials 2016, 9, 537. [Google Scholar] [CrossRef]
- Sugiyarto, K.H.; Scudder, M.L.; Craig, D.C.; Goodwin, H.A. Electronic and Structural Properties of the Spin Crossover Systems Bis(2,6-bis(pyrazol-3-yl)pyridine)iron(II)Thiocyanate and Selenocyanate. Aust. J. Chem. 2000, 53, 755–765. [Google Scholar] [CrossRef]
- Marcén, S.; Lecren, L.; Capes, L.; Goodwin, H.A.; Létard, J.-F. Critical temperature of the LIESST effect in a series of hydrated and anhydrous complex salts Febpp2X2. Chem. Phys. Lett. 2002, 358, 87–95. [Google Scholar] [CrossRef]
- Létard, J.F.; Guionneau, P.; Nguyen, O.; Costa, J.S.; Marcen, S.; Chastanet, G.; Marchivie, M.; Goux-Capes, L. A Guideline to the Design of Molecular-Based Materials with Long-Lived Photomagnetic Lifetimes. Chem. A Eur. J. 2005, 11, 4582–4589. [Google Scholar] [CrossRef] [PubMed]
Sample | % N | % C | % H |
---|---|---|---|
batch I | 30.32 | 15.48 | 3.24 |
batch II | 32.38 | 15.38 | 3.12 |
batch III | 37.36 | 16.17 | 3.39 |
[Fe(NH2trz)3]Br2 | 35.92 | 15.40 | 2.59 |
[Fe(NH2trz)3]Br2·H2O | 34.59 | 14.83 | 2.90 |
[Fe(NH2trz)3]Br2·2H2O | 33.35 | 14.30 | 3.20 |
[Fe(NH2trz)3]Br2·3H2O | 32.20 | 13.81 | 3.48 |
Sample | % N | % C | % H |
---|---|---|---|
batch IV | 28.25 | 17.77 | 2.84 |
batch V | 36.99 | 16.00 | 2.91 |
[Fe(NH2trz)3](BF4)2 | 34.89 | 14.96 | 2.51 |
[Fe(NH2trz)3](BF4)2·2H2O | 32.47 | 13.92 | 3.11 |
Sample | % N | % C | % H |
---|---|---|---|
batch VI | 23.84 | 16.13 | 3.15 |
batch VII | 24.45 | 15.70 | 2.97 |
[Fe(Htrz)2(trz)](BF4) | 36.10 | 20.66 | 2.29 |
[Fe(Htrz)2(trz)](BF4)·3H2O | 31.29 | 17.89 | 3.38 |
[Fe(Htrz)3](BF4)2 | 28.87 | 16.51 | 2.06 |
Sample | % N | % C | % H |
---|---|---|---|
batch VIII | 25.77 | 45.73 | 3.24 |
batch IX | 25.98 | 46.12 | 3.26 |
[Fe(bpp)2](NCS)2·2H2O | 26.66 | 45.72 | 3.52 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Daro, N.; Moulet, L.; Penin, N.; Paradis, N.; Létard, J.-F.; Lebraud, E.; Buffière, S.; Chastanet, G.; Guionneau, P. Spray-Drying to Get Spin-Crossover Materials. Materials 2017, 10, 60. https://doi.org/10.3390/ma10010060
Daro N, Moulet L, Penin N, Paradis N, Létard J-F, Lebraud E, Buffière S, Chastanet G, Guionneau P. Spray-Drying to Get Spin-Crossover Materials. Materials. 2017; 10(1):60. https://doi.org/10.3390/ma10010060
Chicago/Turabian StyleDaro, Nathalie, Lucie Moulet, Nicolas Penin, Nicolas Paradis, Jean-François Létard, Eric Lebraud, Sonia Buffière, Guillaume Chastanet, and Philippe Guionneau. 2017. "Spray-Drying to Get Spin-Crossover Materials" Materials 10, no. 1: 60. https://doi.org/10.3390/ma10010060
APA StyleDaro, N., Moulet, L., Penin, N., Paradis, N., Létard, J. -F., Lebraud, E., Buffière, S., Chastanet, G., & Guionneau, P. (2017). Spray-Drying to Get Spin-Crossover Materials. Materials, 10(1), 60. https://doi.org/10.3390/ma10010060