Perspective for Fibre-Hybrid Composites in Wind Energy Applications
Abstract
:1. Introduction
2. Synergetic Effects
- The tensile strength of carbon/glass fibre-hybrid composites can be about 25% higher than expected based on the bilinear rule of mixtures [32].
- Are sensitive to stress concentrations at the grips [34].
- Tend to split along the fibre direction [35], which is due to a combination of preventing the Poisson contraction within the grips, and their inherent low resistance to splitting.
- Release a large amount of energy when they fail, making it difficult to establish whether failure occurred in/near the grips or away from the grips [35].
- They hinder the splitting mechanism, as the glass fibre plies help to keep the composite together.
- Interactions among the fibres govern the hybrid effects.
- Fibre-hybrid composites with more finely dispersed microstructures allow for more interactions among the fibres, and hence larger hybrid effects.
- Constituent materials with properties that are further apart offer a larger potential for achieving strong hybrid effects.
3. Tensile Failure
3.1. Failure Development
- The same sample size in hybrid composites contains fewer fibres of the low elongation type than composites with only low elongation fibres. This implies that a size effect can contribute towards an increased failure strain.
- The high elongation fibres tend to constrain cluster size, as they are less likely to fail than the low elongation fibre type. This delays the growth of clusters of fibre breaks, and therefore increases the failure strain [28].
- The difference in coefficients of thermal expansion can cause thermal residual stresses upon cooldown after curing. This is known to cause compressive stresses in the carbon fibre plies in carbon/glass fibre-hybrid composites, which counteract the externally applied loads. This contribution is, however, relatively small in general [31,38,39,40], and even smaller for wind turbine blades, as they are typically cured either at 20–40 °C for infusion processing or 80 °C for prepreg-based technologies.
- The broken fibres release their strain energy when they break, and cause stress waves to propagate through the composite. The presence of two fibre types affects this propagation and can potentially lower the dynamic stress concentrations [28,41]. The number of studies on this effect is limited, making it difficult to assess its importance.
3.2. Influencing Parameters
3.3. Size Scaling
3.4. Multidirectional Composites
3.5. Conclusions
4. Flexural and Compressive Failure
5. Fatigue Failure
6. Conclusions
Acknowledgments
Conflicts of Interest
References
- Schleussner, C.F.; Lissner, T.K.; Fischer, E.M.; Wohland, J.; Perrette, M.; Golly, A.; Rogelj, J.; Childers, K.; Schewe, J.; Frieler, K.; et al. Differential climate impacts for policy-relevant limits to global warming: The case of 1.5 °C and 2 °C. Earth Syst. Dyn. 2016, 7, 327–351. [Google Scholar] [CrossRef] [Green Version]
- Luthra, S.; Kumar, S.; Kharb, R.; Ansari, M.F.; Shimmi, S.L. Adoption of smart grid technologies: An analysis of interactions among barriers. Renew. Sustain. Energy Rev. 2014, 33, 554–565. [Google Scholar] [CrossRef]
- Poizot, P.; Dolhem, F. Clean energy new deal for a sustainable world: From non-CO2 generating energy sources to greener electrochemical storage devices. Energy Environ. Sci. 2011, 4, 2003–2019. [Google Scholar] [CrossRef]
- Pope, K.; Dincer, I.; Naterer, G.F. Energy and exergy efficiency comparison of horizontal and vertical axis wind turbines. Renew. Energy 2010, 35, 2102–2113. [Google Scholar] [CrossRef]
- Fernandez-Gamiz, U.; Zulueta, E.; Boyano, A.; Ansoategui, I.; Uriarte, I. Five megawatt wind turbine power output improvements by passive flow control devices. Energies 2017, 10, 742. [Google Scholar] [CrossRef]
- Fernandez-Gamiz, U.; Zulueta, E.; Boyano, A.; Ramos-Hernanz, J.; Lopez-Guede, J. Microtab design and implementation on a 5 MW wind turbine. Appl. Sci. 2017, 7, 536. [Google Scholar] [CrossRef]
- Sørensen, B.F. Materials and structures for wind turbine rotor blades—An overview. In Proceedings of the 17th International Conference on Composite Materials, Edinburgh, UK, 27–31 July 2009. [Google Scholar]
- Mishnaevsky, L. Composite materials for wind energy applications: Micromechanical modeling and future directions. Comput. Mech. 2012, 50, 195–207. [Google Scholar] [CrossRef]
- Zhou, H.F.; Dou, H.Y.; Qin, L.Z.; Chen, Y.; Ni, Y.Q.; Ko, J.M. A review of full-scale structural testing of wind turbine blades. Renew. Sustain. Energy Rev. 2014, 33, 177–187. [Google Scholar] [CrossRef]
- Mohamed, M.H.; Wetzel, K.K. 3D woven carbon/glass hybrid spar cap for wind turbine rotor blade. J. Sol. Energy Eng. 2006, 128, 562–573. [Google Scholar] [CrossRef]
- Thomsen, O.T. Sandwich materials for wind turbine blades—Present and future. J. Sandw. Struct. Mater. 2009, 11, 7–26. [Google Scholar] [CrossRef]
- Brøndsted, P.; Lilholt, H.; Lystrup, A. Composite materials for wind power turbine blades. Ann. Rev. Mater. Res. 2005, 35, 505–538. [Google Scholar] [CrossRef]
- Hayman, B.; Wedel-Heinen, J.; Brøndsted, P. Materials challenges in present and future wind energy. MRS Bull. 2011, 33, 343–353. [Google Scholar] [CrossRef]
- Joselin Herbert, G.M.; Iniyan, S.; Sreevalsan, E.; Rajapandian, S. A review of wind energy technologies. Renew. Sustain. Energy Rev. 2007, 11, 1117–1145. [Google Scholar] [CrossRef]
- Griffin, D.A.; Zuteck, M.D. Scaling of composite wind turbine blades for rotors of 80 to 120 m diameter. J. Sol. Energy Eng. 2001, 123, 310–318. [Google Scholar] [CrossRef]
- Mikkelsen, L.P. A simplified model predicting the weight of the load carrying beam in a wind turbine blade. IOP Conf. Ser. Mater. Sci. Eng. 2016, 139, 012038. [Google Scholar] [CrossRef]
- Wood, K. Wind Turbine Blades: Glass vs. Carbon Fiber. Available online: http://www.compositesworld.com (accessed on 12 November 2016).
- Joosse, P.A.; van Delft, D.R.V.; Kensche, C.; Soendergaard, D.; van den Berg, R.M.; Hagg, F. Cost effective large blade components by using carbon fibers. J. Sol. Energy Eng. 2002, 124, 412–418. [Google Scholar] [CrossRef]
- Joosse, P.; van Delft, D.; Kensche, C.; Hahn, F.; Jacobsen, T.; van den Berg, R. Economic use of carbon fibres in large wind turbine blades? In 2000 Asme Wind Energy Symposium; American Institute of Aeronautics and Astronautics: Reston, VA, USA, 2000. [Google Scholar]
- Sutherland, H.J. A summary of the fatigue properties of wind turbine materials. Wind Energy 2000, 3, 1–34. [Google Scholar] [CrossRef]
- Monk, C. Carbon fibre—Hallenges and benefits for use in wind turbine blade design. In Proceedings of the GO Carbon Conference, Manchester, UK, 26–28 October 2015. [Google Scholar]
- De Goeij, W.C.; van Tooren, M.J.L.; Beukers, A. Implementation of bending-torsion coupling in the design of a wind-turbine rotor-blade. Appl. Energy 1999, 63, 191–207. [Google Scholar] [CrossRef]
- Chikhradze, N.M.; Marquis, F.D.; Japaridze, L.A.; Abashidze, G.S.; Okujava, L.M. Polymer based composite and hybrid materials for wind power generation. Anglais 2010, 654–656, 2612–2615. [Google Scholar] [CrossRef]
- Rosemeier, M.; Bätge, M. A concept study of a carbon spar cap design for a 80 m wind turbine blade. J. Phys. Conf. Ser. 2014, 524, 012039. [Google Scholar] [CrossRef]
- Eihusen, J.A.; Peters, A.R. Characterization of the transverse thermal conductivity of intraply hybrid composite laminates. In Advanced Materials & Processes Preparing for the New Millennium; Green, J., Howell, D.D., Eds.; Society for the Advancement of Material and Process Engineering: Diamond Bar, CA, USA, 1999; Volume 31, pp. 211–220. [Google Scholar]
- Llorca, J.; Gonzalez, C.; Molina-Aldareguia, J.M.; Segurado, J.; Seltzer, R.; Sket, F.; Rodriguez, M.; Sadaba, S.; Munoz, R.; Canal, L.P. Multiscale modeling of composite materials: A roadmap towards virtual testing. Adv. Mater. 2011, 23, 5130–5147. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Xu, J.Z. Structural failure analysis of wind turbines impacted by super typhoon usagi. Eng. Fail. Anal. 2016, 60, 391–404. [Google Scholar] [CrossRef]
- Swolfs, Y.; Gorbatikh, L.; Verpoest, I. Fibre hybridisation in polymer composites: A review. Compos. Part A Appl. Sci. Manuf. 2014, 67, 181–200. [Google Scholar] [CrossRef]
- Hayashi, T. On the improvement of mechanical properties of composites by hybrid composition. In Proceedings of the 8th International Reinforced Plastics Conference, Brighton, UK, 10–12 October 1972; pp. 149–152. [Google Scholar]
- Czél, G.; Wisnom, M.R. Demonstration of pseudo-ductility in high performance glass/epoxy composites by hybridisation with thin-ply carbon prepreg. Compos. Part A Appl. Sci. Manuf. 2013, 52, 23–30. [Google Scholar] [CrossRef]
- Wisnom, M.R.; Czel, G.; Swolfs, Y.; Jalalvand, M.; Gorbatikh, L.; Verpoest, I. Hybrid effects in thin ply carbon/glass unidirectional laminates: Accurate experimental determination and prediction. Compos. Part A Appl. Sci. Manuf. 2016, 88, 131–139. [Google Scholar] [CrossRef] [Green Version]
- Shan, Y.; Liao, K. Environmental fatigue behavior and life prediction of unidirectional glass—Carbon/epoxy hybrid composites. Int. J. Fatigue 2002, 24, 847–859. [Google Scholar]
- Swolfs, Y.; Geboes, Y.; Gorbatikh, L.; Pinho, S.T. The importance of translaminar fracture toughness for the penetration impact behaviour of woven carbon/glass hybrid composites. Compos. Part A Appl. Sci. Manuf. 2017, 103, 1–8. [Google Scholar] [CrossRef]
- Czél, G.; Jalalvand, M.; Wisnom, M.R. Hybrid specimens eliminating stress concentrations in tensile and compressive testing of unidirectional composites. Compos. Part A Appl. Sci. Manuf. 2016, 91, 436–447. [Google Scholar] [CrossRef]
- Swolfs, Y.; Verpoest, I.; Gorbatikh, L. Tensile failure of hybrid composites: Measuring, predicting and understanding. IOP Conf. Ser. Mater. Sci. Eng. 2016, 139, 1–12. [Google Scholar] [CrossRef]
- Kretsis, G. A review of the tensile, compressive, flexural and shear properties of hybrid fibre-reinforced plastics. Composites 1987, 18, 13–23. [Google Scholar] [CrossRef]
- Swolfs, Y.; Verpoest, I.; Gorbatikh, L. A review of input data and modelling assumptions in longitudinal strength models for unidirectional fibre-reinforced composites. Compos. Struct. 2016, 150, 153–172. [Google Scholar] [CrossRef]
- Manders, P.W.; Bader, M.G. The strength of hybrid glass/carbon fibre composites part 1 failure strain enhancement and failure mode. J. Mater. Sci. 1981, 16, 2233–2245. [Google Scholar] [CrossRef]
- Zweben, C. Tensile strength of hybrid composites. J. Mater. Sci. 1977, 12, 1325–1337. [Google Scholar] [CrossRef]
- Bunsell, A.R.; Harris, B. Hybrid carbon and glass fibre composites. Composites 1974, 5, 157–164. [Google Scholar] [CrossRef]
- Xing, J.; Hsiao, G.C.; Chou, T.W. A dynamic explanation of the hybrid effect. J. Compos. Mater. 1981, 15, 443–461. [Google Scholar] [CrossRef]
- Fukuda, H. Micromechanical strength theory of hybrid composites. Adv. Compos. Mater. 1984, 1, 39–53. [Google Scholar] [CrossRef]
- Fukuda, H.; Chou, T.W. Stress concentrations in a hybrid composite sheet. J. Appl. Mech. Trans. ASME 1983, 50, 845–848. [Google Scholar] [CrossRef]
- Fukuda, H.; Chou, T.W. Monte Carlo simulation of the strength of hybrid composites. J. Compos. Mater. 1982, 16, 371–385. [Google Scholar] [CrossRef]
- Swolfs, Y.; McMeeking, R.M.; Gorbatikh, L.; Verpoest, I. The effect of fibre dispersion on initial failure strain and cluster development in unidirectional carbon/glass hybrid composites. Compos. Part A Appl. Sci. Manuf. 2015, 69, 279–287. [Google Scholar] [CrossRef]
- Swolfs, Y.; Verpoest, I.; Gorbatikh, L. Maximising the hybrid effect in unidirectional hybrid composites. Mater. Des. 2016, 93, 39–45. [Google Scholar] [CrossRef]
- Mishnaevsky, L., Jr.; Dai, G. Hybrid carbon/glass fiber composites: Micromechanical analysis of structure—Damage resistance relationships. Comput. Mater. Sci. 2014, 81, 630–640. [Google Scholar] [CrossRef]
- Rajan, V.P.; Curtin, W.A. Rational design of fiber-reinforced hybrid composites: A global load sharing analysis. Compos. Sci. Technol. 2015, 117, 199–207. [Google Scholar] [CrossRef]
- Swolfs, Y.; McMeeking, R.M.; Rajan, V.P.; Zok, F.W.; Verpoest, I.; Gorbatikh, L. Global load sharing model for unidirectional hybrid fibre-reinforced composites. J. Mech. Phys. Solids 2015, 84, 380–394. [Google Scholar] [CrossRef] [Green Version]
- Fukunaga, H.; Chou, T.W.; Fukuda, H. Probabilistic strength analyses of interlaminated hybrid composites. Compos. Sci. Technol. 1989, 35, 331–345. [Google Scholar] [CrossRef]
- Bakis, C.E.; Nanni, A.; Terosky, J.A.; Koehler, S.W. Self-monitoring, pseudo-ductile, hybrid FRP reinforcement rods for concrete applications. Compos. Sci. Technol. 2001, 61, 815–823. [Google Scholar] [CrossRef]
- Peijs, A.; Dekok, J.M.M. Hybrid composites based on polyethylene and carbon fibres part 6: Tensile and fatigue behavior. Composites 1993, 24, 19–32. [Google Scholar] [CrossRef]
- Liang, Y.; Sun, C.; Ansari, F. Acoustic emission characterization of damage in hybrid fiber-reinforced polymer rods. J. Compos. Constr. 2004, 8, 70–78. [Google Scholar] [CrossRef]
- Harlow, D.G. Statistical properties of hybrid composites. I. Recursion analysis. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 1983, 389, 67–100. [Google Scholar] [CrossRef]
- Fukunaga, H.; Chou, T.W.; Fukuda, H. Strength of intermingled hybrid composites. J. Reinf. Plast. Compos. 1984, 3, 145–160. [Google Scholar] [CrossRef]
- Fukuda, H. An advanced theory of the strength of hybrid composites. J. Mater. Sci. 1984, 19, 974–982. [Google Scholar] [CrossRef]
- Jones, K.D.; Dibenedetto, A.T. Fiber fracture in hybrid composite systems. Compos. Sci. Technol. 1994, 51, 53–62. [Google Scholar] [CrossRef]
- Okabe, T.; Takeda, N. Size effect on tensile strength of unidirectional CFRP composites—Experiment and simulation. Compos. Sci. Technol. 2002, 62, 2053–2064. [Google Scholar] [CrossRef]
- Curtin, W.A. Theory of mechanical properties of ceramic-matrix composites. J. Am. Ceram. Soc. 1991, 74, 2837–2845. [Google Scholar] [CrossRef]
- Curtin, W.A. Exact theory of fibre fragmentation in a single-filament composite. J. Mater. Sci. 1991, 26, 5239–5253. [Google Scholar] [CrossRef]
- Neumeister, J.M. A constitutive law for continuous fiber reinforced brittle matrix composites with fiber fragmentation and stress recovery. J. Mech. Phys. Solids 1993, 41, 1383–1404. [Google Scholar] [CrossRef]
- Hui, C.Y.; Phoenix, S.L.; Ibnabdeljalil, M.; Smith, R.L. An exact closed form solution for fragmentation of weibull fibers in a single filament composite with applications to fiber-reinforced ceramics. J. Mech. Phys. Solids 1995, 43, 1551–1585. [Google Scholar] [CrossRef]
- Pimenta, S.; Pinho, S.T. Hierarchical scaling law for the strength of composite fibre bundles. J. Mech. Phys. Solids 2013, 61, 1337–1356. [Google Scholar] [CrossRef]
- Tavares, R.P.; Melro, A.R.; Bessa, M.A.; Turon, A.; Liu, W.K.; Camanho, P.P. Mechanics of hybrid polymer composites: Analytical and computational study. Comput. Mech. 2016, 57, 405–421. [Google Scholar] [CrossRef]
- Mishnaevsky, L., Jr.; Brøndsted, P. Micromechanisms of damage in unidirectional fiber reinforced composites: 3D computational analysis. Compos. Sci. Technol. 2009, 69, 1036–1044. [Google Scholar] [CrossRef]
- Swolfs, Y.; Morton, H.; Scott, A.E.; Gorbatikh, L.; Reed, P.A.S.; Sinclair, I.; Spearing, S.M.; Verpoest, I. Synchrotron radiation computed tomography for experimental validation of a tensile strength model for unidirectional fibre-reinforced composites. Compos. Part A Appl. Sci. Manuf. 2015, 77, 106–113. [Google Scholar] [CrossRef] [Green Version]
- Swolfs, Y.; McMeeking, R.M.; Verpoest, I.; Gorbatikh, L. Matrix cracks around fibre breaks and their effect on stress redistribution and failure development in unidirectional composites. Compos. Sci. Technol. 2015, 108, 16–22. [Google Scholar] [CrossRef]
- Swolfs, Y.; Verpoest, I.; Gorbatikh, L. Issues in strength models for unidirectional fibre-reinforced composites related to weibull distributions, fibre packings and boundary effects. Compos. Sci. Technol. 2015, 114, 42–49. [Google Scholar] [CrossRef] [Green Version]
- Okabe, T.; Ishii, K.; Nishikawa, M.; Takeda, N. Prediction of tensile strength of unidirectional CFRP composites. Adv. Compos. Mater. 2010, 19, 229–241. [Google Scholar] [CrossRef]
- Okabe, T.; Sekine, H.; Ishii, K.; Nishikawa, M.; Takeda, N. Numerical method for failure simulation of unidirectional fiber-reinforced composites with spring element model. Compos. Sci. Technol. 2005, 65, 921–933. [Google Scholar] [CrossRef]
- Mahesh, S.; Beyerlein, I.J.; Phoenix, S.L. Size and heterogeneity effects on the strength of fibrous composites. Physica D 1999, 133, 371–389. [Google Scholar] [CrossRef]
- Mishnaevskyjr, L.; Brondsted, P. Micromechanical modeling of damage and fracture of unidirectional fiber reinforced composites: A review. Comput. Mater. Sci. 2009, 44, 1351–1359. [Google Scholar] [CrossRef]
- Boyano, A.; De Gracia, J.; Arrese, A.; Mujika, F. Experimental assessment of an end notched flexure test configuration with an inserted roller for analyzing mixed-mode I/II fracture toughness. Eng. Fract. Mech. 2016, 163, 462–475. [Google Scholar] [CrossRef]
- Sørensen, B.F.; Horsewell, A.; Jørgensen, O.; Kumar, A.N.; Engbæk, P. Fracture resistance measurement method for in situ observation of crack mechanisms. J. Am. Ceram. Soc. 1998, 81, 661–669. [Google Scholar] [CrossRef]
- Wang, Y.; Soutis, C. Fatigue behaviour of composite T-joints in wind turbine blade applications. Appl. Compos. Mater. 2017, 24, 461–475. [Google Scholar] [CrossRef]
- Krasnikovs, A.; Varna, J. Transverse cracks in cross-ply laminates. 1. Stress analysis. Mech. Compos. Mater. 1997, 33, 565–582. [Google Scholar] [CrossRef]
- Scott, A.E.; Sinclair, I.; Spearing, S.M.; Thionnet, A.; Bunsell, A.R. Damage accumulation in a carbon/epoxy composite: Comparison between a multiscale model and computed tomography experimental results. Compos. Part A Appl. Sci. Manuf. 2012, 43, 1514–1522. [Google Scholar] [CrossRef]
- Jalalvand, M.; Czél, G.; Wisnom, M.R. Numerical modelling of the damage modes in ud thin carbon/glass hybrid laminates. Compos. Sci. Technol. 2014, 94, 39–47. [Google Scholar] [CrossRef]
- Taketa, I.; Ustarroz, J.; Gorbatikh, L.; Lomov, S.V.; Verpoest, I. Interply hybrid composites with carbon fiber reinforced polypropylene and self-reinforced polypropylene. Compos. Part A Appl. Sci. Manuf. 2010, 41, 927–932. [Google Scholar] [CrossRef]
- Henry, J.; Pimenta, S. Modelling hybrid effects on the stiffness of aligned discontinuous composites with hybrid fibre-types. Compos. Sci. Technol. 2017, 152, 275–289. [Google Scholar] [CrossRef]
- Marom, G.; Fischer, S.; Tuler, F.R.; Wagner, H.D. Hybrid effects in composites: Conditions for positive or negative effects versus rule-of-mixtures behavior. J. Mater. Sci. 1978, 13, 1419–1426. [Google Scholar] [CrossRef]
- Phillips, L.N. The hybrid effect—Does it exist? Composites 1976, 7, 7–8. [Google Scholar] [CrossRef]
- Harris, B.; Bunsell, A.R. Impact properties of glass fibre/carbon fibre hybrid composites. Composites 1975, 6, 197–201. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, Y.; Ma, H.; Yu, T. Tensile and interfacial properties of unidirectional flax/glass fiber reinforced hybrid composites. Compos. Sci. Technol. 2013, 88, 172–177. [Google Scholar] [CrossRef]
- Dong, C.; Davies, I.J. Flexural strength of bidirectional hybrid epoxy composites reinforced by e glass and t700s carbon fibres. Compos. Part B Eng. 2015, 72, 65–71. [Google Scholar] [CrossRef]
- Dong, C.S.; Duong, J.; Davies, I.J. Flexural properties of S-2 glass and TR30S carbon fiber-reinforced epoxy hybrid composites. Polym. Compos. 2012, 33, 773–781. [Google Scholar] [CrossRef]
- Dong, C.; Sudarisman; Davies, I.J. Flexural properties of E glass and TR50S carbon fiber reinforced epoxy hybrid composites. J. Mater. Eng. Perform. 2013, 22, 41–49. [Google Scholar] [CrossRef]
- Davies, I.J.; Hamada, H. Flexural properties of a hybrid polymer matrix composite containing carbon and silicon carbide fibres. Adv. Compos. Mater. 2001, 10, 77–96. [Google Scholar] [CrossRef]
- Sudarisman; Davies, I.J. Flexural failure of unidirectional hybrid fibre-reinforced polymer (FRP) composites containing different grades of glass fibre. Adv. Mater. Res. 2008, 41–42, 357–362. [Google Scholar] [CrossRef]
- Dong, C.; Davies, I.J. Optimal design for the flexural behaviour of glass and carbon fibre reinforced polymer hybrid composites. Mater. Des. 2012, 37, 450–457. [Google Scholar] [CrossRef]
- Dong, C.; Davies, I.J. Flexural and tensile moduli of unidirectional hybrid epoxy composites reinforced by s-2 glass and t700s carbon fibres. Mater. Des. 2014, 54, 893–899. [Google Scholar] [CrossRef]
- Kalantari, M.; Dong, C.; Davies, I.J. Numerical investigation of the hybridisation mechanism in fibre reinforced hybrid composites subjected to flexural load. Compos. Part B Eng. 2016, 102, 100–111. [Google Scholar] [CrossRef]
- Dong, C. Uncertainties in flexural strength of carbon/glass fibre reinforced hybrid epoxy composites. Compos. Part B Eng. 2016, 98, 176–181. [Google Scholar] [CrossRef]
- Lo, K.H.; Chim, E.S.M. Compressive strength of unidirectional composites. J. Reinf. Plast. Compos. 1992, 11, 838–896. [Google Scholar] [CrossRef]
- Chamis, C.C.; Handler, L.M.; Manderscheid, J. Composite Nanomechanics: A Mechanistic Properties Prediction; NASA/TM 2007, 2007-214673; NASA: Washington, DC, USA, 2007; pp. 1–21.
- Budiansky, B.; Fleck, N.A. Compressive failure of fibre composites. J. Mech. Phys. Solids 1993, 41, 183–211. [Google Scholar] [CrossRef]
- Budiansky, B.; Fleck, N.A.; Amazigo, J.C. On kink-band propagation in fiber composites. J. Mech. Phys. Solids 1998, 46, 1637–1653. [Google Scholar] [CrossRef]
- Azzi, V.D.; Tsai, S.W. Anisotropic strength of composites. Exp. Mech. 1965, 5, 283–288. [Google Scholar] [CrossRef]
- Tsai, S.W.; Wu, E.M. A general theory of strength for anisotropic materials. J. Compos. Mater. 1971, 5, 58–80. [Google Scholar] [CrossRef]
- Laffan, M.J.; Pinho, S.T.; Robinson, P.; McMillan, A.J. Translaminar fracture toughness testing of composites: A review. Polym. Test. 2012, 31, 481–489. [Google Scholar] [CrossRef]
- Puck, A.; Schürmann, H. Failure analysis of FRP laminates by means of physically based phenomenological models. Compos. Sci. Technol. 1998, 58, 1045–1067. [Google Scholar] [CrossRef]
- Pinho, S.T.; Darvizeh, R.; Robinson, P.; Schuecker, C.; Camanho, P.P. Material and structural response of polymer-matrix fibre-reinforced composites. J. Compos. Mater. 2012, 46, 2313–2341. [Google Scholar] [CrossRef]
- Gutkin, R.; Pinho, S.T.; Robinson, P.; Curtis, P.T. Micro-mechanical modelling of shear-driven fibre compressive failure and of fibre kinking for failure envelope generation in CFRP laminates. Compos. Sci. Technol. 2010, 70, 1214–1222. [Google Scholar] [CrossRef]
- Schultheisz, C.R.; Waas, A.M. Compressive failure of composites, part I: Testing and micromechanical theories. Prog. Aerosp. Sci. 1996, 32, 1–42. [Google Scholar] [CrossRef]
- Dvorak, G.J. Composite materials: Inelastic behavior, damage, fatigue and fracture. Int. J. Solids Struct. 2000, 37, 155–170. [Google Scholar] [CrossRef]
- Talreja, R. Fatigue of composite materials—Damage mechanisms and fatigue life diagrams. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 1981, 378, 461–475. [Google Scholar] [CrossRef]
- Dai, G.; Mishnaevsky, L., Jr. Fatigue of hybrid glass/carbon composites: 3D computational studies. Compos. Sci. Technol. 2014, 94, 71–79. [Google Scholar] [CrossRef]
- Vallons, K.; Adolphs, G.; Lucas, P.; Lomov, S.V.; Verpoest, I. Quasi-ud glass fibre NCF composites for wind energy applications: A review of requirements and existing fatigue data for blade materials. Mech. Ind. 2013, 14, 175–189. [Google Scholar] [CrossRef]
- Mishnaevsky, L.; Brøndsted, P.; Nijssen, R.; Lekou, D.J.; Philippidis, T.P. Materials of large wind turbine blades: Recent results in testing and modeling. Wind Energy 2012, 15, 83–97. [Google Scholar] [CrossRef]
- Jespersen, K.M.; Zangenberg, J.; Lowe, T.; Withers, P.J.; Mikkelsen, L.P. Fatigue damage assessment of uni-directional non-crimp fabric reinforced polyester composite using x-ray computed tomography. Compos. Sci. Technol. 2016, 136, 94–103. [Google Scholar] [CrossRef]
- Quaresimin, M.; Carraro, P.A.; Maragoni, L. Early stage damage in off-axis plies under fatigue loading. Compos. Sci. Technol. 2016, 128, 147–154. [Google Scholar] [CrossRef]
- Fernando, G.; Dickson, R.F.; Adam, T.; Reiter, H.; Harris, B. Fatigue behavior of hybrid composites part 1 carbon-kevlar hybrids. J. Mater. Sci. 1988, 23, 3732–3743. [Google Scholar] [CrossRef]
- Dickson, R.F.; Fernando, G.F.; Adam, T.; Reiter, H.; Harris, B. Fatigue behavior of hybrid composites part 2 carbon-glass hybrids. J. Mater. Sci. 1989, 24, 227–233. [Google Scholar] [CrossRef]
- Hofer, K.E., Jr.; Rao, N.; Stander, M. Fatigue behaviour of graphite/glass/epoxy hybrid composites. Carbon Fibres 1974, 1, 201–212. [Google Scholar]
- Gamstedt, E.K.; Talreja, R. Fatigue damage mechanisms in unidirectional carbon-fibre-reinforced plastics. J. Mater. Sci. 1999, 34, 2535–2546. [Google Scholar] [CrossRef]
- Gamstedt, E.K.; Berglund, L.A.; Peijs, T. Fatigue mechanisms in unidirectional glass-fibre-reinforced polypropylene. Compos. Sci. Technol. 1999, 59, 759–768. [Google Scholar] [CrossRef]
- Sevenois, R.D.B.; Van Paepegem, W. Fatigue damage modeling techniques for textile composites: Review and comparison with unidirectional composite modeling techniques. Appl. Mech. Rev. 2015, 67, 020802. [Google Scholar] [CrossRef]
- Shan, Y.; Lai, K.F.; Wan, K.T.; Liao, K. Static and dynamic fatigue of glass-carbon hybrid composites in fluid environment. J. Compos. Mater. 2002, 36, 159–172. [Google Scholar] [CrossRef]
- Shan, Y.; Liao, K. Environmental fatigue of unidirectional glass–carbon fiber reinforced hybrid composite. Compos. Part B Eng. 2001, 32, 355–363. [Google Scholar] [CrossRef]
- Wu, Z.S.; Wang, X.; Iwashita, K.; Sasaki, T.; Hamaguchi, Y. Tensile fatigue behaviour of FRP and hybrid FRP sheets. Compos. Part B Eng. 2010, 41, 396–402. [Google Scholar] [CrossRef]
- Bach, P.W. Fatigue Properties of Glass- and Glass/Carbon-Polyester Composites for Wind Turbines; Netherlands Energy Research Foundation: Petten, The Netherlands, 1992; Volume ecn-c-92-o72. [Google Scholar]
- Garcea, S.C.; Sinclair, I.; Spearing, S.M. Fibre failure assessment in carbon fibre reinforced polymers under fatigue loading by synchrotron x-ray computed tomography. Compos. Sci. Technol. 2016, 133, 157–164. [Google Scholar] [CrossRef]
- Vallons, K.; Adolphs, G.; Lucas, P.; Lomov, S.V.; Verpoest, I. The influence of the stitching pattern on the internal geometry, quasi-static and fatigue mechanical properties of glass fibre non-crimp fabric composites. Compos. Part A Appl. Sci. Manuf. 2014, 56, 272–279. [Google Scholar] [CrossRef]
© 2017 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Swolfs, Y. Perspective for Fibre-Hybrid Composites in Wind Energy Applications. Materials 2017, 10, 1281. https://doi.org/10.3390/ma10111281
Swolfs Y. Perspective for Fibre-Hybrid Composites in Wind Energy Applications. Materials. 2017; 10(11):1281. https://doi.org/10.3390/ma10111281
Chicago/Turabian StyleSwolfs, Yentl. 2017. "Perspective for Fibre-Hybrid Composites in Wind Energy Applications" Materials 10, no. 11: 1281. https://doi.org/10.3390/ma10111281
APA StyleSwolfs, Y. (2017). Perspective for Fibre-Hybrid Composites in Wind Energy Applications. Materials, 10(11), 1281. https://doi.org/10.3390/ma10111281