Growth of Anisotropic Gold Nanoparticle Assemblies via Liposome Fusion
Abstract
:1. Introduction
2. Results and Discussion
2.1. Growth of Anisotropic cAuNP14 Assemblies on Liposome Surfaces
2.2. Liposome Fusion during Growth of cAuNP14 Assemblies
2.3. Assembly of cAuNPs with Average Diameters of 31 nm on Liposome Surfaces
2.4. Growth of cAuNP31 Assemblies by Liposome Fusion
2.5. Effect of cAuNP Sizes on Liposome Fusion
2.6. Control of AuNP n in Anisotropic Assemblies by Regulating Liposome Fusion
3. Experimental Section
3.1. Materials
3.2. Preparation of cAuNPs with an Average Diameter of 14 nm (cAuNP14)
3.3. Preparation of cAuNPs with an Average Diameter of 31 nm (cAuNP31)
3.4. Preparation of the DPPC Liposomes
3.5. Preparation of cAuNP14–DPPC Liposome Composites
3.6. Preparation of cAuNP31–DPPC Liposome Composites
3.7. Cryo-TEM
4. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Kelly, K.L.; Coronado, E.; Zhao, L.L.; Schatz, G.C. The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment. J. Phys. Chem. B 2003, 107, 668–677. [Google Scholar] [CrossRef]
- Mock, J.J.; Barbic, M.; Smith, D.R.; Schultz, D.A.; Schultz, S. Shape effects in plasmon resonance of individual colloidal silver nanoparticles. J. Chem. Phys. 2002, 116, 6755–6759. [Google Scholar] [CrossRef]
- Lee, K.-S.; El-Sayed, M.A. Gold and silver nanoparticles in sensing and imaging: Sensitivity of plasmon response to size, shape, and metal composition. J. Phys. Chem. B 2006, 110, 19220–19225. [Google Scholar] [CrossRef] [PubMed]
- Halas, N.J. Playing with plasmons. Tuning the optical resonant properties of metallic nanoshells. MRS Bull. 2005, 30, 362–367. [Google Scholar] [CrossRef]
- Ghosh, S.K.; Nath, S.; Kundu, S.; Esumi, K.; Pal, T. Solvent and ligand effects on the localized surface plasmon resonance (LSPR) of gold colloids. J. Phys. Chem. B 2004, 108, 13963–13971. [Google Scholar] [CrossRef]
- Underwood, S.; Mulvaney, P. Effect of the solution pefractive-index on the color of gold collids. Langmuir 1994, 10, 3427–3430. [Google Scholar] [CrossRef]
- Miller, M.M.; Lazarides, A.A. Sensitivity of metal nanoparticle surface plasmon resonance to the dielectric environment. J. Phys. Chem. B 2005, 109, 21556–21565. [Google Scholar] [CrossRef] [PubMed]
- Kotov, N.A.; Meldrum, F.C.; Wu, C.; Fendler, J.H. Monoparticulate layer and Langmuir-Blodgett-type multiparticulate layers of size-quantized cadmium-sulfide clusters—A colloid-chemical approach to construction. J. Phys. Chem. 1994, 98, 2735–2738. [Google Scholar] [CrossRef]
- Murray, C.B.; Kagan, C.R.; Bawendi, M.G. Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assemblies. Annu. Rev. Mater. Sci. 2000, 30, 545–610. [Google Scholar] [CrossRef]
- Pileni, M.P. Nanocrystal self-assemblies: Fabrication and collective properties. J. Phys. Chem. B 2001, 105, 3358–3371. [Google Scholar] [CrossRef]
- Collier, C.P.; Vossmeyer, T.; Heath, J.R. Nanocrystal superlattices. Annu. Rev. Phys. Chem. 1998, 49, 371–404. [Google Scholar] [CrossRef] [PubMed]
- Xi, C.; Marina, P.F.; Xia, H.; Wang, D. Directed self-assembly of gold nanoparticles into plasmonic chains. Soft Matter 2015, 11, 4562–4571. [Google Scholar] [CrossRef] [PubMed]
- Tang, Z.Y.; Kotov, N.A. One-dimensional assemblies of nanoparticles: Preparation, properties, and promise. Adv. Mater. 2005, 17, 951–962. [Google Scholar] [CrossRef]
- Maier, S.A.; Brongersma, M.L.; Kik, P.G.; Meltzer, S.; Requicha, A.A.G.; Atwater, H.A. Plasmonics—A route to nanoscale optical devices. Adv. Mater. 2001, 13, 1501–1505. [Google Scholar] [CrossRef]
- Maier, S.A.; Kik, P.G.; Atwater, H.A.; Meltzer, S.; Harel, E.; Koel, B.E.; Requicha, A.A.G. Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides. Nat. Mater. 2003, 2, 229–232. [Google Scholar] [CrossRef] [PubMed]
- Walker, M.M.; Dennis, T.E.; Kirschvink, J.L. The magnetic sense and its use in long-distance navigation by animals. Curr. Opin. Neurobiol. 2002, 12, 735–744. [Google Scholar] [CrossRef]
- Alivisatos, P. The use of nanocrystals in biological detection. Nat. Biotechnol. 2004, 22, 47–52. [Google Scholar] [CrossRef] [PubMed]
- Nie, Z.; Fava, D.; Kumacheva, E.; Zou, S.; Walker, G.C.; Rubinstein, M. Self-assembly of metal-polymer analogues of amphiphilic triblock copolymers. Nat. Mater. 2007, 6, 609–614. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Wang, C.-F.; Chen, S. Interface-directed assembly of one-dimensional ordered architecture from quantum dots guest and polymer host. J. Am. Chem. Soc. 2011, 133, 8412–8415. [Google Scholar] [CrossRef] [PubMed]
- Le, J.D.; Pinto, Y.; Seeman, N.C.; Musier-Forsyth, K.; Taton, T.A.; Kiehl, R.A. DNA-templated self-assembly of metallic nanocomponent arrays on a surface. Nano Lett. 2004, 4, 2343–2347. [Google Scholar] [CrossRef]
- Bae, A.H.; Numata, M.; Hasegawa, T.; Li, C.; Kaneko, K.; Sakurai, K.; Shinkai, S. 1D arrangement of an nanoparticles by the helical structure of schizophyllan: A unique encounter of a natural product with inorganic compounds. Angew. Chem. Int. Ed. 2005, 44, 2030–2033. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Wang, D. Controlling the growth of charged-nanoparticle chains through interparticle electrostatic repulsion. Angew. Chem. Int. Ed. 2008, 47, 3984–3987. [Google Scholar] [CrossRef] [PubMed]
- Sugikawa, K.; Kadota, T.; Yasuhara, K.; Ikeda, A. Anisotropic self-Assembly of citrate-Coated gold nanoparticles on fluidic liposomes. Angew. Chem. Int. Ed. 2016, 55, 4059–4063. [Google Scholar] [CrossRef] [PubMed]
- Grabar, K.C.; Freeman, R.G.; Hommer, M.B.; Natan, M.J. Preparation and characterization of Au collid monolayers. Anal. Chem. 1995, 67, 735–743. [Google Scholar] [CrossRef]
- Frens, G. Controlled nucelation for regualtion of particle-size in monodisperse gold suspentions. Nature 1973, 241, 20–22. [Google Scholar]
- Dujardin, E.; Hsin, L.B.; Wang, C.R.C.; Mann, S. DNA-driven self-assembly of gold nanorods. Chem. Commun. 2001, 1264–1265. [Google Scholar] [CrossRef]
- Zhong, Z.Y.; Patskovskyy, S.; Bouvrette, P.; Luong, J.H.T.; Gedanken, A. The surface chemistry of Au colloids and their interactions with functional amino acids. J. Phys. Chem. B 2004, 108, 4046–4052. [Google Scholar] [CrossRef]
- Jiang, L.; Guan, J.; Zhao, L.; Li, J.; Yang, W. pH-dependent aggregation of citrate-capped Au nanoparticles induced by Cu2+ ions: The competition effect of hydroxyl groups with the carboxyl groups. Colloids Surf. A 2009, 346, 216–220. [Google Scholar] [CrossRef]
- Bastus, N.G.; Comenge, J.; Puntes, V. Kinetically controlled seeded growth synthesis of citrate-stabilized gold nanoparticles of up to 200 nm: Size focusing versus ostwald ripening. Langmuir 2011, 27, 11098–11105. [Google Scholar] [CrossRef] [PubMed]
- Dewi, M.R.; Laufersky, G.; Nann, T. A highly efficient ligand exchange reaction on gold nanoparticles: Preserving their size, shape and colloidal stability. RSC Adv. 2014, 4, 34217–34220. [Google Scholar] [CrossRef]
- Sugikawa, K.; Furukawa, Y.; Sada, K. SERS-active metal-organic frameworks embedding gold nanorods. Chem. Mater. 2011, 23, 3132–3134. [Google Scholar] [CrossRef]
- Yu, C.; Varghese, L.; Irudayaraj, J. Surface modification of cetyltrimethylammonium bromide-capped gold nanorods to make molecular probes. Langmuir 2007, 23, 9114–9119. [Google Scholar] [CrossRef] [PubMed]
- Takeuchi, Y.; Ida, T.; Kimura, K. Temperature effect on gold nanodispersion in organic liquids. Surf. Rev. Lett. 1996, 3, 1205–1208. [Google Scholar] [CrossRef]
- Kreibig, U.; Genzel, L. Optical-absorption of small metallic particles. Surf. Sci. 1985, 156, 678–700. [Google Scholar] [CrossRef]
- Liu, K.; Lukach, A.; Sugikawa, K.; Chung, S.; Vickery, J.; Therien-Aubin, H.; Yang, B.; Rubinstein, M.; Kumacheva, E. Copolymerization of metal nanoparticles: A route to colloidal plasmonic copolymers. Angew. Chem. Int. Ed. 2014, 53, 2648–2653. [Google Scholar] [CrossRef] [PubMed]
- Anderson, M.; Omri, A. The effect of different lipid components on the in vitro stability and release kinetics of liposome formulations. Drug Deliv. 2004, 11, 33–39. [Google Scholar] [CrossRef] [PubMed]
- Sideratou, Z.; Foundis, J.; Tsiourvas, D.; Nezis, I.P.; Papadimas, G.; Paleos, C.M. A novel dendrimeric “glue” for adhesion of phosphatidyl choline-based liposomes. Langmuir 2002, 18, 5036–5039. [Google Scholar] [CrossRef] [PubMed]
- Tiriveedhi, V.; Kitchens, K.M.; Nevels, K.J.; Ghandehari, H.; Butko, P. Kinetic analysis of the interaction between poly(amidoamine) dendrimers and model lipid membranes. Biochim. Biophys. Acta 2011, 1808, 209–218. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Mart, R.J.; Webb, S.J. Vesicle aggregation by multivalent ligands: Relating crosslinking ability to surface affinity. Org. Biomol. Chem. 2007, 5, 2498–2505. [Google Scholar] [CrossRef] [PubMed]
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sugikawa, K.; Kadota, T.; Matsuo, K.; Yasuhara, K.; Ikeda, A. Growth of Anisotropic Gold Nanoparticle Assemblies via Liposome Fusion. Materials 2017, 10, 1317. https://doi.org/10.3390/ma10111317
Sugikawa K, Kadota T, Matsuo K, Yasuhara K, Ikeda A. Growth of Anisotropic Gold Nanoparticle Assemblies via Liposome Fusion. Materials. 2017; 10(11):1317. https://doi.org/10.3390/ma10111317
Chicago/Turabian StyleSugikawa, Kouta, Tatsuya Kadota, Kotaro Matsuo, Kazuma Yasuhara, and Atsushi Ikeda. 2017. "Growth of Anisotropic Gold Nanoparticle Assemblies via Liposome Fusion" Materials 10, no. 11: 1317. https://doi.org/10.3390/ma10111317
APA StyleSugikawa, K., Kadota, T., Matsuo, K., Yasuhara, K., & Ikeda, A. (2017). Growth of Anisotropic Gold Nanoparticle Assemblies via Liposome Fusion. Materials, 10(11), 1317. https://doi.org/10.3390/ma10111317