Photocatalytic Degradation of Organic Dye under UV‐A Irradiation Using TiO2‐Vetiver Multifunctional Nano Particles
Abstract
:1. Introduction
2.1. Preparation of Vetiver Adsorbent
2.2. Synthesis of Pure TiO2 and TiO2-Vetiver Core–Shell
2.3. Characterisation
2.4. Photocatalytic Performance Testing
3. Results and Discussion
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Managing Water Uncertainty and Risk. The United Nations World Water Development Report 4. 2012, Volume 1. Available online: http://www.unesco.org/new/en/natural-sciences/environment/water/wwap/wwdr/wwdr4-2012/ (accessed on 1 November 2016).
- Vo, P.T.; Ngo, H.H.; Guo, W.; Zhou, J.L.; Nguyen, P.D.; Listowski, A.; Wang, X.C. A mini-review on the impacts of climate change on wastewater reclamation and reuse. Sci. Total Environ. 2014, 494–495, 9–17. [Google Scholar]
- Visa, M.; Andronic, L.; Duta, A. Fly ash-TiO2 nanocomposite material for multi-pollutants wastewater treatment. J. Environ. Manag. 2015, 150, 336–343. [Google Scholar] [CrossRef] [PubMed]
- Asghar, A.; Raman, A.A.A.; Daud, W.M.A.W. Advanced oxidation processes for in-situ production of hydrogen peroxide/hydroxyl radical for textile wastewater treatment: A review. J. Clean Prod. 2015, 87, 826–838. [Google Scholar] [CrossRef]
- Pang, Y.L.; Abdullah, A.Z. Fe3+ doped TiO2 nanotubes for combined adsorption–sonocatalytic degradation of real textile wastewater. Appl. Catal. B 2013, 129, 473–481. [Google Scholar] [CrossRef]
- United States Environmental Protection Agency (EPA). Guidelines for Water Reuse; 2012. Available online: http://nepis.epa.gov/Exe/ZyPURL.cgi?Dockey=P100FS7K.TXT (accessed on 1 November 2016).
- De la Cruz, N.; Romero, V.; Dantas, R.F.; Marco, P.; Bayarri, B.; Giménez, J.; Esplugas, S. o-Nitrobenzaldehyde actinometry in the presence of suspended TiO2 for photocatalytic reactors. Catal. Today 2013, 209, 209–214. [Google Scholar] [CrossRef]
- Zhang, Z.; Wu, H.; Yuan, Y.; Fang, Y.; Jin, L. Development of a novel capillary array photocatalytic reactor and application for degradation of azo dye. Chem. Eng. J. 2012, 184, 9–15. [Google Scholar] [CrossRef]
- Nakaruk, A.; Ragazzon, D.; Sorrell, C.C. Anatase–rutile transformation through high-temperature annealing of titania films produced by ultrasonic spray pyrolysis. Thin Solid Films 2010, 518, 3735–3742. [Google Scholar] [CrossRef]
- Mills, A.; O’Rourke, C.; Moore, K. Powder semiconductor photocatalysis in aqueous solution: An overview of kinetics-based reaction mechanisms. J. Photochem. Photobiol. A 2015, 310, 66–105. [Google Scholar] [CrossRef]
- Pelaez, M.; Nolan, N.T.; Pillai, S.C.; Seery, M.K.; Falaras, P.; Kontos, A.G.; Dunlop, P.S.M.; Hamilton, J.W.J.; Byrnee, J.A.; O’Shea, K.; et al. A review on the visible light active titanium dioxide photocatalysts for environmental applications. Appl. Catal. B 2012, 125, 331–349. [Google Scholar] [CrossRef]
- Zangeneh, H.; Zinatizadeh, A.A.L.; Habibi, M.; Akia, M.; Hasnain Isa, M. Photocatalytic oxidation of organic dyes and pollutants in wastewater using different modified titanium dioxides: A comparative review. J. Ind. Eng. Chem. 2015, 26, 1–36. [Google Scholar] [CrossRef]
- Spasiano, D.; Marotta, R.; Malato, S.; Fernandez-Ibanez, P.; Somma, I.D. Solar photocatalysis: Materials, reactors, some commercial, and pre-industrialized applications. A comprehensive approach. Appl. Catal. B 2015, 170–171, 90–123. [Google Scholar] [CrossRef]
- Cardoso, J.C.; Lucchiari, N.; Zanoni, M.V.B. Bubble annular photoeletrocatalytic reactor with TiO2 nanotubes arrays applied in the textile wastewater. J. Environ. Chem. Eng. 2015, 3, 1177–1184. [Google Scholar] [CrossRef]
- Kılıç, B.; Gedik, N.; Pıravadıllı Mucur, S.; Serhan Hergula, A.; Gür, E. Band gap engineering and modifying surface of TiO2 nanostructures by Fe2O3 for enhanced-performance of dye sensitized solar cell. Mater. Sci. Semicon. Proc. 2015, 31, 363–371. [Google Scholar] [CrossRef]
- Rico, V.; Romero, P.; Hueso, J.L.; Espinós, J.P.; González-Elipe, A.R. Wetting angles and photocatalytic activities of illuminated TiO2 thin films. Catal. Today 2009, 143, 347–354. [Google Scholar] [CrossRef]
- Dittricha, T.; Ofir, A.; Tirosh, S.; Grinis, L.; Zaban, A. Influence of the porosity on diffusion and lifetime in porous TiO2 layers. Appl. Phys. Lett. 2006, 88, 182110. [Google Scholar] [CrossRef] [Green Version]
- Romero-Gómez, P.; Hamad, S.; González, J.C.; Barranco, A.; Espinós, J.P.; Cotrino, J.; González-Elipe, A.R. Band gap narrowing versus formation of electronic states in the gap in N−TiO2 thin films. J. Phys. Chem. C 2010, 114, 22546–22557. [Google Scholar] [CrossRef]
- Romero-Gómez, P.; Rico, V.; Borrás, A.; Barranco, A.; Espinós, J.P.; Cotrino, J.; González-Elipe, A.R. Chemical state of nitrogen and visible surface and Schottky barrier driven photoactivities of N-doped TiO2 thin films. J. Phys. Chem. C 2009, 113, 13341–13351. [Google Scholar] [CrossRef]
- Bulushev, D.A.; Kiwi-Minsker, L.; Zaikovskii, V.I.; Lapina, O.B.; Ivanov, A.A.; Reshetnikov, S.I.; Renken, A. Effect of potassium doping on the structural and catalytic properties of V/Ti-oxide in selective toluene oxidation. Appl. Catal. A 2000, 202, 243–250. [Google Scholar] [CrossRef]
- Phanichphant, S.; Nakaruk, A.; Channei, D. Photocatalytic activity of the binary composite CeO2/SiO2 for degradation of dye. Appl. Surf. Sci. 2016, 387, 214–220. [Google Scholar] [CrossRef]
- Chong, M.N.; Jin, B.; Chow, C.W.K.; Saint, C. Recent developments in photocatalytic water treatment technology: A review. Water Res. 2010, 44, 2997–3027. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Lim, M. Amal, R. TiO2-coated natural zeolite: Rapid humic acid adsorption and effective photocatalytic regeneration. Chem. Eng. Sci. 2014, 105, 46–52. [Google Scholar] [CrossRef]
- Moustakas, N.G.; Kontos, A.G.; Likodimos, V.; Katsaros, F.; Boukos, N.; Tsoutsou, D.; Dimoulas, A.; Romanos, G.E.; Dionysiou, D.D.; Falaras, P. Inorganic–organic core–shell titania nanoparticles for efficient visible light activated photocatalysis. Appl. Catal. B 2013, 130–131, 14–24. [Google Scholar] [CrossRef]
- Su, T.; Chen, S.; Quan, X.; Zhao, H.; Zhang, Y. A silicon-doped TiO2 nanotube arrays electrode with enhanced photoelectrocatalytic activity. Appl. Surf. Sci. 2008, 255, 2167–2172. [Google Scholar] [CrossRef]
- Courcot, D.; Grzybowska, B.; Barbaux, Y.; Rigole, M.; Ponchel, A.; Guelton, M. Effect of potassium addition to the TiO2 support on the structure of V2O5/TiO2 and its catalytic properties in the oxidative dehydrogenation of propane. J. Chem. Soc. Faraday Trans. 1996, 92, 1609–1617. [Google Scholar] [CrossRef]
- Kanakaraju, D.; Kockler, J.; Motti, C.A.; Glass, B.D.; Oelgemoller, M. Titanium dioxide/zeolite integrated photocatalytic adsorbents for the degradation of amoxicillin. Appl. Catal. B 2015, 166–167, 45–55. [Google Scholar] [CrossRef]
- Ghorbani, F.; Younesi, H.; Mehraban, Z.; Celik, M.S.; Ghoreyshi, A.A.; Anbia, M. Preparation and characterization of highly pure silica from sedge as agricultural waste and its utilization in the synthesis of mesoporous silica MCM-41. J. Taiwan Inst. Chem. Eng. 2013, 44, 821–828. [Google Scholar] [CrossRef]
- Chen, Y.D.; Huang, M.J.; Huang, B.; Chen, X.R. Mesoporous activated carbon from inherently potassium-rich pokeweed by in situ self-activation and its use for phenol removal. J. Anal. Appl. Pyrolysis 2012, 98, 159–165. [Google Scholar] [CrossRef]
- Ye, M.; Sun, M.; Liu, Z.; Ni, N.; Chen, Y.; Gu, C.; Kengara, F.O.; Li, H.; Jiang, X. Evaluation of enhanced soil washing process and phytoremediation with maize oil, carboxymethyl-b-cyclodextrin, and vetiver grass for the recovery of organochlorine pesticides and heavy metals from a pesticide factory site. J. Environ. Manage. 2014, 141, 161–168. [Google Scholar] [CrossRef] [PubMed]
- Paillat, L.; Périchet, C.; Pierrat, J.; Lavoine, S.; Filippi, J.; Meierhenrich, U.; Fernandez, X. Purification of vetiver alcohols and esters for quantitative high-performance thin-layer chromatography determination in Haitian vetiver essential oils and vetiver acetates. J. Chromatogr. A 2012, 1241, 103–111. [Google Scholar] [CrossRef] [PubMed]
- Yaseen, M.; Singh, M.; Ram, D. Growth, yield and economics of vetiver (Vetiveria zizanioides L. Nash) under intercropping system. Ind. Crops Prod. 2014, 61, 417–421. [Google Scholar] [CrossRef]
- Singh, R.; Narzary, D.; Bhardwaj, J.; Singh, A.K.; Kumar, S.; Kumar, A. Molecular diversity and SSR transferability studies in Vetiver grass (Vetiveria zizanioides L. Nash). Ind. Crops Prod. 2014, 53, 187–198. [Google Scholar] [CrossRef]
- Lal, R.K.; Gupta, P.; Gupta, V.; Sarkar, S.; Singh, S. Genetic variability and character associations in vetiver (Vetiveria zizanioides L. Nash). Ind. Crops Prod. 2013, 49, 273–277. [Google Scholar] [CrossRef]
- Le, S.T.T.; Yuangpho, N.; Threrujirapapong, T.; Khanitchaidecha, W.; Nakaruk, A. Synthesis of mesoporous materials from vetiver grass for wastewater treatment. J. Aust. Ceram. Soc. 2015, 51, 40–44. [Google Scholar]
- Rajamanickam, D.; Shanthi, M. Photocatalytic degradation of an azo dye Sunset Yellow under UV-A light using TiO2/CAC composite catalysts. Spectrochim. Acta, Part A 2014, 128, 100–108. [Google Scholar] [CrossRef] [PubMed]
- Dai, S.; Wu, Y.; Sakai, T.; Du, Z.; Sakai, H.; Abe, M. Preparation of highly crystalline TiO2 nanostructures by acid-assisted hydrothermal treatment of hexagonal-structured nanocrystalline titania/cetyltrimethyammonium bromide nanoskeleton. Nanoscale Res. Lett. 2010, 5, 1829–1835. [Google Scholar] [CrossRef] [PubMed]
- Bezares, I.; del Campo, A.; Herrasti, P.; Muñoz-Bonilla, A. A simple aqueous electrochemical method to synthesize TiO2 nanoparticles. Phys. Chem. Chem. Phys. 2015, 17, 29319–29326. [Google Scholar] [CrossRef] [PubMed]
- Hanaor, D.A.H.; Sorrell, C.C. Review of the anatase to rutile phase transformation. J. Mater. Sci. 2011, 46, 855–874. [Google Scholar] [CrossRef]
- Lin, C.P.; Chen, H.; Nakaruk, A.; Koshy, P.; Sorrell, C.C. Effect of annealing temperature on the photocatalytic activity of TiO2 thin films. Energy Procedia 2013, 34, 627–636. [Google Scholar] [CrossRef]
- Shannon, R.D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. A 1976, 32, 751–767. [Google Scholar] [CrossRef]
- Chen, W.F.; Koshy, P.; Huang, Y.; Adabifiroozjaei, E.; Yao, Y.; Sorrell, C.C. Effects of precipitation, liquid formation, and intervalence charge transfer on the properties and photocatalytic performance of cobalt- or vanadium-doped TiO2 thin films. Int. J. Hydrogen Energy 2016, 41, 19025–19056. [Google Scholar] [CrossRef]
- Nakaruk, A.; Lin, C.Y.W.; Koshy, P.; Sorrell, C.C. Iron doped titania thin films prepared by spin coating. Adv. Appl. Ceram. 2012, 111, 129–133. [Google Scholar] [CrossRef]
- Lin, Z.; Orlov, A.; Lambert, R.M.; Payne, M.C. New insights into the origin of visible light photocatalytic activity of nitrogen-doped and oxygen-deficient anatase TiO2. J. Phys. Chem. B 2005, 109, 20948–20952. [Google Scholar] [CrossRef] [PubMed]
- Prasai, B.; Cai, B.; Underwood, M.K.; Lewis, J.P.; Drabold, D.A. Properties of amorphous and crystalline titanium dioxide from first principles. J. Mater. Sci. 2012, 47, 7515–7521. [Google Scholar] [CrossRef]
- Yu, J.G.; Yu, H.G.; Cheng, B.; Zhao, X.J.; Yu, J.C.; Ho, W.K. The effect of calcination temperature on the surface microstructure and photocatalytic activity of TiO2 thin films prepared by liquid phase deposition. J. Phys. Chem. B 2003, 107, 13871–13879. [Google Scholar] [CrossRef]
- Zhang, F.; Maeda, K.; Takata, T.; Domen, K. Improvement of the photocatalytic hydrogen evolution activity of Sm2Ti2S2O5 under visible light by metal ion additives. J. Catal. 2011, 280, 1–7. [Google Scholar] [CrossRef]
- Tian, F.; Wu, Z.; Chen, Q.; Yan, Y.; Cravotto, G.; Wu, Z. Microwave-induced crystallization of AC/TiO2 for improving the performance of rhodamine B dye degradation. Appl. Surf. Sci. 2015, 351, 104–112. [Google Scholar] [CrossRef]
- Pesci, F.M.; Wang, G.; Klug, D.R.; Li, Y.; Cowan, A.J. Efficient suppression of electron–hole recombination in oxygen-deficient hydrogen-treated TiO2 nanowires for photoelectrochemical water splitting. J. Phys. Chem. C 2013, 117, 25837–25844. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Wang, H.; Ling, Y.; Tang, Y.; Yang, X.; Fitzmorris, R.C.; Wang, C.; Zhang, J.Z.; Li, Y. Hydrogen-treated TiO2 nanowire arrays for photoelectrochemical water splitting. Nano Lett. 2011, 11, 3026–3033. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Zhao, Z.; Wang, X.; Yu, T.; Guan, J.; Yu, Z.; Li, Z.; Zou, Z. Increasing the oxygen vacancy density on the TiO2 surface by La-doping for dye-sensitized solar cells. J. Phys. Chem. C 2010, 114, 18396–18400. [Google Scholar] [CrossRef]
- Fujii, K.; Sato, Y.; Takase, S.; Shimizu, Y. Effects of oxygen vacancies and reaction conditions on oxygen reduction reaction on Pyrochlore-Type lead-ruthenium oxide. J. Electrochem. Soc. 2015, 162, F129–F135. [Google Scholar] [CrossRef]
- Xu, L.; Jiang, Q.; Xiao, Z.; Li, X.; Huo, J.; Wang, S.; Dai, L. Plasma-engraved Co3O4 nanosheets with oxygen vacancies and high surface area for the oxygen evolution reaction. Angew. Chem. Int. Ed. 2016, 55, 5277–5281. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.H.; Wang, C.C.; Liao, S.Y.; Gan, J.Y.; Perng, T.P. CNT/TiO2 core–shell structures prepared by atomic layer deposition and characterization of their photocatalytic properties. Thin Solid Films 2016, 616, 151–159. [Google Scholar] [CrossRef]
- Zhang, G.; Teng, F.; Zhao, C.; Chen, L.; Zhang, P.; Wang, Y.; Gong, C.; Zhang, Z.; Xie, E. Enhanced photocatalytic activity of TiO2/carbon@TiO2 core–shell nanocomposite prepared by two-step hydrothermal method. Appl. Surf. Sci. 2014, 311, 384–390. [Google Scholar] [CrossRef]
- Lee, J.M.; Han, S.B.; Kim, J.Y.; Lee, Y.W.; Ko, A.R.; Roh, B.; Hwang, I.; Park, K.W. TiO2@carbon core–shell nanostructure supports for platinum and their use for methanol electrooxidation. Carbon 2010, 48, 2290–2296. [Google Scholar] [CrossRef]
Sample | Specific Surface Area (m2/g) | Pore Volume (cm3/g) | Crystallite Size at (101) nm | Surface Area-Normalised Rate Constants (h−1·m−2·g) |
---|---|---|---|---|
Pure TiO2 | 40 | 0.1252 | 21 | 0.008 |
TiO2-Vetiver Core–shell | 86 | 0.3065 | 14 | 0.013 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thao, L.T.S.; Dang, T.T.T.; Khanitchaidecha, W.; Channei, D.; Nakaruk, A. Photocatalytic Degradation of Organic Dye under UV‐A Irradiation Using TiO2‐Vetiver Multifunctional Nano Particles. Materials 2017, 10, 122. https://doi.org/10.3390/ma10020122
Thao LTS, Dang TTT, Khanitchaidecha W, Channei D, Nakaruk A. Photocatalytic Degradation of Organic Dye under UV‐A Irradiation Using TiO2‐Vetiver Multifunctional Nano Particles. Materials. 2017; 10(2):122. https://doi.org/10.3390/ma10020122
Chicago/Turabian StyleThao, Le Thi Song, Trinh Trung Tri Dang, Wilawan Khanitchaidecha, Duangdao Channei, and Auppatham Nakaruk. 2017. "Photocatalytic Degradation of Organic Dye under UV‐A Irradiation Using TiO2‐Vetiver Multifunctional Nano Particles" Materials 10, no. 2: 122. https://doi.org/10.3390/ma10020122
APA StyleThao, L. T. S., Dang, T. T. T., Khanitchaidecha, W., Channei, D., & Nakaruk, A. (2017). Photocatalytic Degradation of Organic Dye under UV‐A Irradiation Using TiO2‐Vetiver Multifunctional Nano Particles. Materials, 10(2), 122. https://doi.org/10.3390/ma10020122