High Energy Storage Density and Impedance Response of PLZT2/95/5 Antiferroelectric Ceramics
Abstract
:1. Introduction
2. Experimental Procedure
3. Results and Discussion
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Singh, K. Antiferroelectric lead zirconate. A material for energy storage. Ferroelectrics 1989, 94, 433. [Google Scholar] [CrossRef]
- Young, S.; Zhang, J.; Hong, W.; Tan, X. Mechanical self-confinement to enhance energy storage density of antiferroelectric capacitors. J. Appl. Phys. 2013, 113, 054101. [Google Scholar] [CrossRef]
- Liu, Z.; Chen, X.; Peng, W.; Xu, C.; Dong, X.; Gao, F.; Wang, G. Temperature-dependent stability of energy storage properties of Pb0.97La0.02(Zr0.58Sn0.335Ti0.085)O3 antiferroelectric ceramics for pulse power capacitors. Appl. Phys. Lett. 2015, 106, 262901. [Google Scholar] [CrossRef]
- Chen, S.; Wang, X.; Yang, T.; Wang, J. Composition-dependent dielectric properties and energy storage performance of (Pb,La)(Zr,Sn,Ti)O3 antiferroelectric ceramics. J. Electroceram. 2014, 32, 307–310. [Google Scholar] [CrossRef]
- Chauhan, A.; Patel, S.; Vaish, R.; Bowen, C. Anti-ferroelectric ceramics for high energy density capacitors. Materials 2015, 8, 8009–8031. [Google Scholar] [CrossRef]
- Bharadwaja, S.; Krupanidhi, S. Backward switching phenomenon from field forced ferroelectric to antiferroelectric phases in antiferroelectric PbZrO3 thin films. J. Appl. Phys. 2001, 89, 4541–4547. [Google Scholar] [CrossRef]
- Ma, B.; Kwon, D.; Narayanan, M.; Balachandran, U. Dielectric properties and energy storage capability of antiferroelectric Pb0.92La0.08Zr0.95Ti0.05O3 film-on-foil capacitors. J. Mater. Res. 2009, 24, 2993–2996. [Google Scholar] [CrossRef]
- Pokharel, B.; Pandey, D. Dielectric studies of phase transitions in Pb1-xBaxZrO3. J. Appl. Phys. 2000, 88, 5364–5373. [Google Scholar] [CrossRef]
- Silva, P.; Venet, M.; Florencio, O. Influence of diffuse phase transition on the an elastic behavior of Nb-doped Pb(Zr0.53Ti0.47)O3 ceramics. J. Alloys Compd. 2015, 647, 784–789. [Google Scholar] [CrossRef]
- Kumar, N.; Tirupathi, P.; Kumar, B.; Pastor, M.; Pandey, A.; Choudhary, R. Observation of dielectric relaxor behavior in Pb0.95Sr0.05(Zr0.5Ti0.5)O3 ceramics. Adv. Mater. Lett. 2015, 64, 284–289. [Google Scholar] [CrossRef]
- Pokharel, B.; Ranjan, R.; Pandey, D.; Siruguri, V.; Paranjpe, S. Rhombohedral superlattice structure and relaxor ferroelectric behavior of (Pb0.70Ba0.30)ZrO3 ceramics. Appl. Phys. Lett. 1999, 74, 756–758. [Google Scholar] [CrossRef]
- Zhang, T.; Tang, X.; Liu, Q.; Jiang, Y.; Huang, X. Oxygen-vacancy-related high temperature dielectric relaxation in (Pb1-xBax)ZrO3 ceramics. J. Am. Ceram. Soc. 2015, 98, 551–558. [Google Scholar] [CrossRef]
- Yang, T.; Yao, X. Effect of compositional variations on field-induced phase transition of (Pb,La)(Zr,Sn,Ti)O3 antiferroelectric ceramics. Ferroelectrics 2007, 355, 71–76. [Google Scholar] [CrossRef]
- Dai, Z.; Xu, Z.; Yao, X. Effect of dc bias on pressure-induced depolarization of Pb(Nb,Zr,Sn,Ti)O3 ceramics. Appl. Phys. Lett. 2008, 92, 072904. [Google Scholar] [CrossRef]
- Xu, B.; Moses, P.; Pai, N.; Cross, L. Charge release of lanthanum-doped lead zirconate titanate stannate antiferroelectric thin films. Appl. Phys. Lett. 1998, 72, 593–595. [Google Scholar] [CrossRef]
- Mirshekarloo, M.; Yao, K.; Sritharan, T. Large strain and high energy storage density in orthorhombic perovskite, (Pb0.97La0.02)(Zr1-x-ySnxTiy)O3 antiferroelectric thin films. Appl. Phys. Lett. 2010, 97, 142902. [Google Scholar] [CrossRef]
- Malik, R.; Hussain, A.; Maqbool, A.; Zaman, A.; Song, T.; Kim, W.; Kim, M. Giant strain, thermally-stable high energy storage properties and structural evolution of Bi-based lead-free piezoceramics. J. Alloys Compd. 2016, 682, 302–310. [Google Scholar] [CrossRef]
- Zhang, T.; Tang, X.; Liu, Q.; Jiang, Y.; Huang, X.; Zhou, Q. Energy-storage properties and high-temperature dielectric relaxation behaviors of relaxor ferroelectric Pb(Mg1/3Nb2/3)O3-PbTiO3 ceramics. J. Appl. D Appl. Phys. 2016, 49, 095302. [Google Scholar] [CrossRef]
- Pu, Y.; Yao, M.; Liu, H.; Fromling, T. Phase transition behavior, dielectric and ferroelectric properties of (1 − x)(Bi0.5Na0.5)TiO3-xBa0.85Ca0.15Ti0.9Zr0.1O3 ceramics. J. Eur. Ceram. Soc. 2016, 36, 2461–2468. [Google Scholar] [CrossRef]
- Zhan, D.; Xu, Q.; Huang, D.; Liu, H.; Chen, W.; Zhang, F. Dielectric nonlinearity and electric breakdown behaviors of Ba0.95Ca0.05Zr0.3Ti0.7O3 ceramics for energy storage utilizations. J. Alloys Compd. 2016, 682, 594–600. [Google Scholar] [CrossRef]
- Zhang, G.; Chen, Z.; Fan, B.; Liu, J.; Chen, M.; Shen, M.; Liu, P.; Zeng, Y.; Jiang, S.; Wang, Q. Large enhancement of the electrocaloric effect in PLZT ceramics prepared by hot-pressing. APL Mater. 2016, 4, 064103. [Google Scholar] [CrossRef]
- Wawrzała, P.; Korzekwa, J. Charge-discharge properties of PLZT x/90/10 ceramics. Ferroelectrics 2013, 446, 91–101. [Google Scholar] [CrossRef]
- Ciuchi, I.; Mitoseriu, L.; Galassi, C. Antiferroelectric to ferroelectric crossover and energy storage properties of (Pb1-xLax)(Zr0.90Ti0.10)1-x/4O3 (0.02 ≤ x ≤ 0.04) ceramics. J. Am. Ceram. Soc. 2016, 99, 2382–2387. [Google Scholar] [CrossRef]
- Dai, X.; Viehland, D. Effects of lanthanum modification on the antiferroelectric-ferroelectric stability of high zirconium content lead zirconate titanate. J. Appl. Phys. 1994, 76, 3701–3709. [Google Scholar] [CrossRef]
- Xu, Z.; Dai, X.; Viehland, D. Impurity-induced incommensuration in antiferroelectric La-modified lead zirconate titanate. Phys. Rev. B 1995, 51, 6261–6271. [Google Scholar] [CrossRef]
- Hao, X.; Yue, Z.; Xu, J.; An, S.; Nan, C. Energy-storage performance and electrocaloric effect in (100)-oriented Pb0.97La0.02(Zr0.95Ti0.05)O3 antiferroelectric thick films. J. Appl. Phys. 2011, 110, 064109. [Google Scholar] [CrossRef]
- Sukkha, U.; Vittayakorn, W.; Muanghlua, R.; Niemcharoen, S.; Boonchom, B.; Vittayakorn, N. Phase transition behavior of the (1 − x)PbZrO3 − xBa(Al1/2Nb1/2)O3 solid solution. J. Am. Ceram. Soc. 2012, 95, 3151–3157. [Google Scholar] [CrossRef]
- Bidault, O.; Goux, P.; Kchikech, M.; Belkaoumi, M.; Maglione, M. Space-charge relaxation in perovskites. Phys. Rev. B 1994, 49, 7868–7873. [Google Scholar] [CrossRef]
- Singh, G.; Tiwari, V.; Gupta, P. Role of oxygen vacancies on relaxation and conduction behavior of KNbO3 ceramic. J. Appl. Phys. 2010, 107, 064103. [Google Scholar] [CrossRef]
- Ye, M.; Sun, Q.; Chen, X.; Jiang, Z.; Wang, F. Electrical and energy storage performance of Eu-doped PbZrO3 thin films with different gradient sequences. J. Am. Ceram. Soc. 2012, 95, 1486–1488. [Google Scholar] [CrossRef]
- Chu, B.; Zhou, X.; Ren, K.; Neese, B.; Lin, M.; Wang, Q.; Bauer, F.; Zhang, Q. A dielectric polymer with high electric energy density and fast discharge speed. Science 2006, 313, 1887. [Google Scholar] [CrossRef] [PubMed]
- Patel, S.; Chauhan, A.; Vaish, R. Enhancing electrical energy storage density in anti-ferroelectric ceramics using ferroelastic domain switching. Mater. Res. Express 2014, 1, 045502. [Google Scholar] [CrossRef]
- Yu, D.; Xu, N.; Hu, L.; Zhang, Q.; Yang, H. Nanocomposites with BaTiO3-SrTiO3 hybrid fillers exhibiting enhanced dielectric behaviours and energy-storage densities. J. Mater. Chem. C 2015, 3, 4016–4022. [Google Scholar] [CrossRef]
- Wang, Y.; Shen, Z.; Li, Y.; Wang, Z.; Luo, W.; Hong, Y. Optimization of energy storage density and efficiency in BaxSr1-xTiO3 (x ≤ 0.4) paraelectric ceramics. Ceram. Int. 2015, 41, 8252–8256. [Google Scholar] [CrossRef]
- Patel, S.; Chauhan, A.; Vaish, R. Improved electrical energy storage density in Vanadium-doped BaTiO3 bulk ceramics by addition of 3BaO-3TiO2-B2O3 glass. Energy Technol. 2015, 3, 70–76. [Google Scholar] [CrossRef]
- Chen, D.; Tang, X.; Liu, Q.; Jiang, Y.; Ma, C.; Li, R. Impedance response and dielectric relaxation in Co-precipitation derived ferrite (Ni,Zn)Fe2O4 ceramics. J. Appl. Phys. 2013, 113, 214110. [Google Scholar] [CrossRef]
- Gonzalez, A.; García, A.; Benavente-Peces, C.; Pardo, L. Revisiting the characterization of the losses in piezoelectric materials from impedance spectroscopy at resonance. Materials 2016, 9, 72. [Google Scholar] [CrossRef]
- Lei, C.; Wang, C.; Li, T.; Wang, G.; Sun, X.; Liu, L.; Wang, J. Dielectric relaxations and phase-transition-like behavior in SmAlO3 ceramics at high temperatures. J. Mater. Sci. 2013, 48, 7294–7299. [Google Scholar] [CrossRef]
- Chen, F.; Liu, Q.; Tang, X.; Jiang, Y.; Yue, J.; Li, J. Diffuse phase transition and high-temperature dielectric relaxation study on (Bi0.5Na0.5)1-xBaxTiO3 ceramics. Physica B 2016, 496, 20–25. [Google Scholar] [CrossRef]
- Li, J.; Tang, X.; Zhang, T.; Liu, Q.; Jiang, Y.; Yue, J. Impedance response and high temperature dielectric relaxation behavior in lead barium strontium zirconate ceramics. J. Mater. Sci. Mater. Electron. 2016, 27, 1582–1589. [Google Scholar] [CrossRef]
- Waser, R.; Baiatu, T.; Hardtl, K. Dc electrical degradation of perovskite-type titanates: I Ceramics. J. Am. Ceram. Soc. 1990, 73, 1645–1653. [Google Scholar] [CrossRef]
- Wang, J.; Tang, X.; Chan, H.; Choy, C. Dielectric relaxation and electrical properties of 0.94Pb(Fe1/2Nb1/2)O3-0.06PbTiO3 single crystals. Appl. Phys. Lett. 2005, 86, 152907. [Google Scholar] [CrossRef]
- Scott, J.; Dawber, M. Oxygen-vacancy ordering as a fatigue mechanism in perovskite ferroelectrics. Appl. Phys. Lett. 2000, 76, 3801–3803. [Google Scholar] [CrossRef]
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, B.; Liu, Q.; Tang, X.; Zhang, T.; Jiang, Y.; Li, W.; Luo, J. High Energy Storage Density and Impedance Response of PLZT2/95/5 Antiferroelectric Ceramics. Materials 2017, 10, 143. https://doi.org/10.3390/ma10020143
Li B, Liu Q, Tang X, Zhang T, Jiang Y, Li W, Luo J. High Energy Storage Density and Impedance Response of PLZT2/95/5 Antiferroelectric Ceramics. Materials. 2017; 10(2):143. https://doi.org/10.3390/ma10020143
Chicago/Turabian StyleLi, Bi, Qiuxiang Liu, Xingui Tang, Tianfu Zhang, Yanping Jiang, Wenhua Li, and Jie Luo. 2017. "High Energy Storage Density and Impedance Response of PLZT2/95/5 Antiferroelectric Ceramics" Materials 10, no. 2: 143. https://doi.org/10.3390/ma10020143
APA StyleLi, B., Liu, Q., Tang, X., Zhang, T., Jiang, Y., Li, W., & Luo, J. (2017). High Energy Storage Density and Impedance Response of PLZT2/95/5 Antiferroelectric Ceramics. Materials, 10(2), 143. https://doi.org/10.3390/ma10020143