Gold Nanoparticles in Photonic Crystals Applications: A Review
Abstract
:1. Introduction
2. AuNPs with Opals
3. AuNPs with Inverse Opals
4. Conclusions
Acknowledgments
Conflicts of Interest
References
- Aguirre, C.I.; Reguera, E.; Stein, A. Tuneable colors in opals and inverse opal photonic crystals. Adv. Funct. Mater. 2010, 20, 2565–2578. [Google Scholar] [CrossRef]
- Fu, J.; Tandaechanurat, A.; Iwamoto, S.; Arakawa, Y. Design of large-bandwidth single-mode operation waveguides in silicon three-dimensional photonic crystals using two guided modes. Opt. Express 2013, 21, 12443–12450. [Google Scholar] [CrossRef] [PubMed]
- Wahle, M.; Ebel, J.; Wilkes, D.; Kitzerow, H.-S. Asymmetric band gap shift in electrically addressed blue phase photonic crystal fibers. Opt. Express 2016, 24, 22718–22729. [Google Scholar] [CrossRef] [PubMed]
- Schutzmann, S.; Venditti, I.; Prosposito, P.; Casalboni, M.; Russo, M.V. High-energy angle resolved reflection spectroscopy on three-dimensional photonic crystals of self-organized polymeric nanospheres. Opt. Express 2008, 16, 897–907. [Google Scholar] [CrossRef] [PubMed]
- Miller, O.D.; Polimeridis, A.G.; Homer Reid, M.T.; Hsu, C.W.; DeLacy, B.G.; Joannopoulos, J.D.; Soljacic, M.; Johnson, S.G. Fundamental limits to optical response in absorptive systems. Opt. Express 2016, 24, 3329–3364. [Google Scholar] [CrossRef] [PubMed]
- Lidorikis, E.; Egusa, S.; Joannopoulos, J.D. Effective medium properties and photonic crystal superstructures of metallic nanoparticle arrays. J. Appl. Phys. 2007, 101, 054304. [Google Scholar] [CrossRef]
- Müller, M.; Zentel, R.; Maka, T.; Romanov, S.G.; Torres, C.M.S. Dye-Containing Polymer Beads as Photonic Crystals. Chem. Mater. 2000, 12, 2508–2512. [Google Scholar] [CrossRef]
- Imai, Y.; Finlayson, C.E.; Goldberg-Oppenheimer, P.; Zhao, Q.; Spahn, P.; Snoswell, D.R.E.; Haines, A.I.; Hellmannb, G.P.; Baumberg, J.J. Electrically conductive polymeric photonic crystals. Soft Matter 2012, 8, 6280–6290. [Google Scholar] [CrossRef]
- Galisteo-López, J.F.; Ibisate, M.; Sapienza, R.; Froufe-Pérez, L.S.; Blanco, Á.; López, C. Self-Assembled Photonic Structures. Adv. Mater. 2011, 23, 30–69. [Google Scholar] [CrossRef] [PubMed]
- Bardosova, M.; Pemble, M.E.; Povey, I.M.; Tredgold, R.H. The Langmuir-Blodgett Approach to Making Colloidal Photonic Crystals from Silica Spheres. Adv. Mater. 2010, 22, 3104–3124. [Google Scholar] [CrossRef] [PubMed]
- Shi, L.; Liu, X.; Yina, H.; Zi, J. Optical response of a flat metallic surface coated with a monolayer array of latex spheres. Phys. Lett. A 2010, 374, 1059–1062. [Google Scholar] [CrossRef]
- Yu, X.; Shi, L.; Han, D.; Zi, J.; Braun, P.V. High Quality Factor Metallodielectric Hybrid Plasmonic-Photonic Crystals. Adv. Funct. Mater. 2010, 20, 1910–1916. [Google Scholar] [CrossRef]
- López-García, M.; Galisteo-López, J.F.; Blanco, A.; Sanchez-Márcos, J.; Lopez, C.; García-Martín, A. Enhancement and directionality of spontaneous emission in hybrid self-assembled photonic-plasmonic crystals. Small 2010, 6, 1757–1761. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Asher, S.A. Photochemical Incorporation of Silver Quantum Dots in Monodisperse Silica Colloids for Photonic Crystal Applications. J. Am. Chem. Soc. 2001, 123, 12528–12535. [Google Scholar] [CrossRef] [PubMed]
- Cai, Z.; Liu, Y.J.; Leong, E.S.P.; Teng, J.; Lu, X. Highly ordered and gap controllable two-dimensional non-close-packed colloidal crystals and plasmonic-photonic crystals with enhanced optical transmission. J. Mater. Chem. 2012, 22, 24668–24675. [Google Scholar] [CrossRef]
- Ding, B.; Bardosova, M.; Pemble, M.E.; Korovin, A.V.; Peschel, U.; Romanov, S.G. Broadband omnidirectional diversion of light in hybrid plasmonic-photonic heterocrystals. Adv. Funct. Mater. 2011, 21, 4182–4192. [Google Scholar] [CrossRef]
- Vasquez, Y.; Kolle, M.; Mishchenko, L.; Hatton, B.D.; Aizenberg, J. Three-Phase Co-assembly: In Situ Incorporation of Nanoparticles into Tuneable, Highly Ordered, Porous Silica Films. ACS Photonics 2014, 1, 53–60. [Google Scholar] [CrossRef]
- Kim, S.; Mitropoulos, A.N.; Spitzberg, J.D.; Tao, H.; Kaplan, D.L.; Omenetto, V. Silk inverse opals. Nat. Photonics 2012, 6, 818–823. [Google Scholar] [CrossRef]
- Moroz, A. Three-dimensional complete photonic-band-gap structures in the visible. Phys. Rev. Lett. 1999, 83, 5274–5277. [Google Scholar] [CrossRef]
- Cushing, S.K.; Hornak, L.A.; Lankford, J.; Liu, Y.; Wu, N. Origin of localized surface plasmon resonances in thin silver film over nanosphere patterns. Appl. Phys. A 2011, 103, 955–958. [Google Scholar] [CrossRef]
- Porcaro, F.; Carlini, L.; Ugolini, A.; Visaggio, D.; Luisetto, I.; Visca, P.; Fratoddi, I.; Venditti, I.; Simonelli, L.; Marini, C.; et al. Synthesis and Structural Characterization of Silver Nanoparticles Stabilized with 3-Mercapto-1-Propansulfonate and 1-Thioglucose Mixed Thiols for Antibacterial Applications. Materials 2016, 9, 1028. [Google Scholar] [CrossRef]
- Prosposito, P.; Mochi, F.; Ciotta, E.; Casalboni, M.; Venditti, I.; Fontana, L.; Testa, G.; Fratoddi, I. Hydrophilic silver nanoparticles with tuneable optical properties: Application for the detection of heavy metals in water. Beilstein J. Nanotechnol. 2016, 7, 1654–1661. [Google Scholar] [CrossRef]
- Xu, M.-F.; Zhu, X.-Z.; Shi, X.-B.; Liang, J.; Jin, Y.; Wang, Z.-K.; Liao, L.-S. Plasmon resonance enhanced optical absorption in inverted polymer/fullerene solar cells with metal nanoparticle-doped solutionprocessable TiO2 layer. ACS Appl. Mater. Interfaces 2014, 5, 2935–2942. [Google Scholar] [CrossRef] [PubMed]
- Ding, T.; Song, K.; Clays, K.; Tung, C.-H. Fabrication of 3D Photonic Crystals of Ellipsoids: Convective Self-Assembly in Magnetic Field. Adv. Mater. 2009, 21, 1936–1940. [Google Scholar] [CrossRef]
- Cai, Z.; Leong, E.S.P.; Wang, Z.; Niu, W.; Zhang, W.; Ravaine, S.; Yakovlev, N.L.; Liu, Y.J.; Teng, J.; Lu, X. Sandwich-structured Fe2O3@SiO2@Au nanoparticles with magnetoplasmonic responses. J. Mater. Chem. C 2015, 3, 11645–11652. [Google Scholar] [CrossRef]
- Gu, Z.-Z.; Horie, R.; Kubo, S.; Yamada, Y.; Fujishima, A.; Sato, O. Fabrication of a Metal-Coated Three-Dimensionally Ordered Macroporous Film and its Application as a Refractive Index Sensor. Angew. Chem. Int. Ed. 2002, 41, 1153–1156. [Google Scholar] [CrossRef]
- Wang, D.; Salgueirino-Maceira, V.; Liz-Marzan, L.M.; Caruso, F. Gold-Silica Inverse Opals by Colloidal Crystal Templating. Adv. Mater. 2002, 14, 908–912. [Google Scholar] [CrossRef]
- Kuncicky, D.M.; Prevo, B.G.; Velev, O.D. Controlled Assembly of SERS Substrates Templated by Colloidal Crystal Films. J. Mater. Chem. 2006, 16, 1207–1211. [Google Scholar] [CrossRef]
- Jones, M.R.; Osberg, K.D.; Macfarlane, R.J.; Langille, M.R.; Mirkin, C.A. Templated Techniques for the Synthesis and Assembly of Plasmonic Nanostructures. Chem. Rev. 2011, 111, 3736–3827. [Google Scholar] [CrossRef] [PubMed]
- Tan, Y.; Qian, W.; Ding, S.; Wang, Y. Gold-Nanoparticle Infiltrated Polystyrene Inverse Opals: A Three-Dimensional Platform for Generating Combined Optical Properties. Chem. Mater. 2006, 18, 3385–3389. [Google Scholar] [CrossRef]
- Ding, S.; Qian, W.; Tan, Y.; Wang, Y. In-Situ Incorporation of Gold Nanoparticles of Desired Sizes into Three-Dimensional Macroporous Matrixes. Langmuir 2006, 22, 7105–7108. [Google Scholar] [CrossRef] [PubMed]
- Khokhar, A.Z.; Rahman, F.; Johnson, N.P. Preparation and properties of gold-infiltrated polystyrene photonic crystals. J. Phys. Chem. Solids 2011, 72, 185–189. [Google Scholar] [CrossRef]
- Wang, D.; Li, J.; Chan, C.T.; Salgueirino-Maceira, V.; LizMarzan, L.M.; Romanov, S.; Caruso, F. Optical Properties of Nanoparticle-Based Metallodielectric Inverse Opals. Small 2005, 1, 122–130. [Google Scholar] [CrossRef] [PubMed]
- Cai, Z.; Jun Liu, Y.; Lu, X.; Teng, J. In Situ “Doping” Inverse Silica Opals with Size-Controllable Gold Nanoparticles for Refractive Index Sensing. J. Phys. Chem. C 2013, 117, 9440–9445. [Google Scholar] [CrossRef]
- Cai, Z.; Xiong, Z.; Lu, X.; Teng, J. In situ gold-loaded titania photonic crystals with enhanced photocatalytic activity. J. Mater. Chem. A 2014, 2, 545–553. [Google Scholar] [CrossRef]
- Parkhomenko, R.G.; Plekhanov, A.I.; Kuchyanov, A.S.; Trubin, S.V.; Kuchumov, B.M.; Igumenov, I.K. Gold nanostructure formation in the photonic crystal matrix by means of MOCVD technique. Surf. Coat. Technol. 2013, 230, 279–283. [Google Scholar] [CrossRef]
- Yeh, Y.-C.; Creran, B.; Rotello, V.M. Gold nanoparticles: Preparation, properties, and applications in bionanotechnology. Nanoscale 2012, 4, 1871–1880. [Google Scholar] [CrossRef] [PubMed]
- Venditti, I.; Chronopoulou, L.; Fratoddi, I.; Palocci, C.; Diociaiuti, M.; Russo, M.V. Candida rugosa lipase immobilization on hydrophilic charged gold nanoparticles as promising biocatalysts: Activity and stability investigations. Colloid Surf. B Biointerfaces 2015, 131, 93–101. [Google Scholar] [CrossRef] [PubMed]
- Rossi, S.; Donadio, S.; Fontana, L.; Porcaro, F.; Battocchio, C.; Venditti, I.; Bracci, L.; Fratoddi, I. Negatively charged gold nanoparticles as dexamethasone carrier: Stability and citotoxic activity. RCS Adv. 2016, 6, 99016–99022. [Google Scholar]
- Castro, H.P.S.; Wender, H.; Alencar, M.A.R.C.; Teixeira, S.R.; Dupont, J.; Hickmann, J.M. Third-order nonlinear optical response of colloidal gold nanoparticles prepared by sputtering deposition. J. Appl. Phys. 2013, 114, 183104. [Google Scholar] [CrossRef]
- López-García, M.; Galisteo-López, J.F.; Blanco, Á.; López, C.; García-Martín, A. High Degree of Optical Tunability of Self-Assembled Photonic-Plasmonic Crystals by Filling Fraction Modification. Adv. Funct. Mater. 2011, 20, 4338–4343. [Google Scholar] [CrossRef]
- Ahn, W.; Boriskina, S.V.; Hong, Y.; Reinhard, B.M. Photonic-Plasmonic Mode Coupling in On-Chip Integrated Optoplasmonic Molecules. ACS Nano 2012, 6, 951–960. [Google Scholar] [CrossRef] [PubMed]
- Hong, Y.; Pourmand, M.; Boriskina, S.V.; Reinhard, B.M. Enhanced Light Focusing in Self-Assembled Optoplasmonic Clusters with Subwavelength Dimensions. Adv. Mater. 2012, 25, 115–119. [Google Scholar] [CrossRef] [PubMed]
- Yang, Q.; Zhu, S.; Peng, W.; Yin, C.; Wang, W.; Gu, J.; Zhang, W.; Ma, J.; Deng, T.; Feng, C. Bioinspired fabrication of hierarchically structured, pH-tuneable photonic crystals with unique transition. ACS Nano 2013, 7, 4911–4918. [Google Scholar] [CrossRef] [PubMed]
- Venditti, I.; Fratoddi, I.; Bearzotti, A. Self-assembled copolymeric nanoparticles as chemical interactive materials for humidity sensors. Nanotechnology 2010, 21, 355502. [Google Scholar] [CrossRef] [PubMed]
- Pantalei, S.; Zampetti, E.; Macagnano, A.; Bearzotti, A.; Venditti, I.; Russo, M.V. Enhanced sensory properties of a multichannel quartz crystal microbalance coated with polymeric nanobeads. Sensors 2007, 7, 2920–2928. [Google Scholar] [CrossRef]
- Bearzotti, A.; Macagnano, A.; Pantalei, S.; Zampetti, E.; Venditti, I.; Fratoddi, I.; Russo, M.V. Alcohol vapors sensory properties of nanostructured conjugated polymer. J. Phys. Condens. Matter 2008, 20, 474207. [Google Scholar] [CrossRef]
- Holtz, J.H.; Asher, S.A. Polymerized colloidal crystal hydrogel films as intelligent chemical sensing materials. Nature 1997, 389, 829–832. [Google Scholar] [CrossRef]
- Asher, S.A.; Alexeev, V.L.; Goponenko, A.V.; Sharma, A.C.; Lednev, I.K.; Wilcox, C.S.; Finegold, D.N. Photonic Crystal Carbohydrate Sensors: Low Ionic Strength Sugar Sensing. J. Am. Chem. Soc. 2003, 125, 3322–3329. [Google Scholar] [CrossRef] [PubMed]
- Cai, Z.; Zhang, J.-T.; Xue, F.; Hong, Z.; Punihaole, D.; Asher, S.A. 2D Photonic Crystal Protein Hydrogel Coulometer for Sensing Serum Albumin Ligand Binding. Anal. Chem. 2014, 86, 4840–4847. [Google Scholar] [CrossRef] [PubMed]
- Venditti, I.; Fratoddi, I.; Russo, M.V.; Bellucci, S.; Crescenzo, R.; Iozzino, L.; Staiano, M.; Aurilia, V.; Varriale, A.; Rossi, M.; et al. Nanobeads-based Assays. The case of gluten detection. J. Phys. Condens. Matter 2008, 20, 474202. [Google Scholar] [CrossRef]
- Cai, Z.; Kwak, D.H.; Punihaole, D.; Hong, Z.; Velankar, S.S.; Liu, X.; Asher, S.A. A Photonic Crystal Protein Hydrogel Sensor for Candida albicans. Angew. Chem. Int. Ed. 2015, 54, 13036–13040. [Google Scholar] [CrossRef] [PubMed]
- Cai, Z.; Smith, N.L.; Zhang, J.-T.; Asher, S.A. Two-Dimensional Photonic Crystal Chemical and Biomolecular Sensors. Anal. Chem. 2015, 87, 5013–5025. [Google Scholar] [CrossRef] [PubMed]
- Fratoddi, I.; Bearzotti, A.; Venditti, I.; Cametti, C.; Russo, M.V. Role of nanostructured polymers on the improvement of electrical response-based relative humidity sensors. Sens. Actuators B 2016, 225, 96–108. [Google Scholar] [CrossRef]
- Cai, Z.; Luck, L.A.; Punihaole, D.; Madura, J.D.; Asher, S.A. Photonic crystal protein hydrogel sensor materials enabled by conformationally induced volume phase transition. Chem. Sci. 2016, 7, 4557–4562. [Google Scholar] [CrossRef]
- Arsenault, A.C.; Puzzo, D.P.; Manners, I.; Ozin, G.A. Photonic-crystal full-colour displays. Nat. Photonics 2007, 1, 468–472. [Google Scholar] [CrossRef]
- Liu, L.; Karuturi, S.K.; Su, L.T.; Wang, Q.; Tok, A.I.Y. Electrochromic photonic crystal displays with versatile color tenability. Electrochem. Commun. 2011, 13, 1163–1165. [Google Scholar] [CrossRef]
- Morandi, V.; Marabelli, F.; Amendola, V.; Meneghetti, M.; Comoretto, D. Light localization effect on the optical properties of opals doped with gold nanoparticles. J. Phys. Chem. C 2008, 112, 6293–6298. [Google Scholar] [CrossRef]
- Rout, D.; Vijaya, R. Plasmonic resonance-induced effects on stopband and emission characteristics of dye-doped opals. Plasmonics 2015, 10, 713–719. [Google Scholar] [CrossRef]
- Rout, D.; Vijaya, R. Localized surface plasmon-influenced fluorescence decay in dye-doped metallo-dielectric opals. J. Appl. Phys. 2016, 119, 023108. [Google Scholar] [CrossRef]
- Deng, T.-S.; Bongard, H.-J.; Marlow, F. A one-step method to coat polystyrene particles with an organo-silica shell and their functionalization. Mater. Chem. Phys. 2015, 162, 548–554. [Google Scholar] [CrossRef]
- Fratoddi, I.; Venditti, I.; Cametti, C.; Russo, M.V. Chemiresistive Polyaniline-Based Gas Sensors. A Mini Review. Sens. Actuators B 2015, 220, 534–548. [Google Scholar] [CrossRef]
- Pelton, M. Modified spontaneous emission in nanophotonic structures. Nat. Photonics 2015, 9, 427–435. [Google Scholar] [CrossRef]
- Vivero-Escoto, J.L.; Huxford-Phillips, R.C.; Lin, W. Silica-based nanoprobes for biomedical imaging and theranostic applications. Chem. Soc. Rev. 2012, 41, 2673–2685. [Google Scholar] [CrossRef] [PubMed]
- Ankudze, B.; Philip, A.; Pakkanen, T.T.; Matikainen, A.; Vahimaa, P. Highly active surface-enhanced Raman scattering (SERS) substrates based on gold nanoparticles infiltrated into SiO2 inverse opals. Appl. Surf. Sci. 2016, 387, 595–602. [Google Scholar] [CrossRef]
- Erola, M.O.A.; Philip, A.; Ahmed, T.; Suvanto, S.; Pakkanen, T.T. Fabrication of Au- and Ag-SiO2 inverse opals having both localized surface plasmon resonance and Bragg diffraction. J. Solid State Chem. 2015, 230, 209–217. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, L.; Hedhili, M.N.; Zhang, H.; Wang, P. Plasmonic Gold Nanocrystals Coupled with Photonic Crystal Seamlessly on TiO2 Nanotube Photoelectrodes for Efficient Visible Light Photoelectrochemical Water Splitting. Nano Lett. 2013, 13, 14–20. [Google Scholar] [CrossRef] [PubMed]
- Wei, Y.; Jiao, J.; Zhao, Z.; Liu, J.; Li, J.; Jiang, G.; Wang, Y.; Duan, A. Fabrication of inverse opal TiO2-supported Au@CdS core–shell nanoparticles for efficient photocatalytic CO2 conversion. Appl. Catal. B 2015, 179, 422–432. [Google Scholar] [CrossRef]
- Zhao, Q.; Haines, A.; Snoswell, D.; Keplinger, C.; Kaltseis, R.; Bauer, S.; Graz, I.; Denk, R.; Spahn, P.; Hellmann, G.; et al. Electric-field-tuned color in photonic crystal elastomers. J. Appl. Phys. Lett. 2012, 100, 101902. [Google Scholar] [CrossRef]
- Zhang, J.; Li, Y.; Zhang, X.; Yang, B. Colloidal Self-Assembly Meets Nanofabrication: From Two-Dimensional Colloidal Crystals to Nanostructure Arrays. Adv. Mater. 2010, 22, 4249–4269. [Google Scholar] [CrossRef] [PubMed]
- Mazurowski, M.; Gallei, M.; Li, J.; Didzoleit, H.; Stuhn, B.; Rehahn, M. Redox-Responsive Polymer Brushes Grafted from Polystyrene Nanoparticles by Means of Surface Initiated Atom Transfer Radical Polymerization. Macromolecules 2012, 45, 8970–8981. [Google Scholar] [CrossRef]
- Venditti, I.; D’Amato, R.; Russo, M.V.; Falconieri, M. Synthesis of conjugated polymeric nanobeads for photonic bandgap materials. Sens. Actuetors B 2007, 126, 35–40. [Google Scholar] [CrossRef]
- Von Freymann, G.; Kitaev, V.; Lotsch, B.V.; Ozin, G.A. Bottom-up assembly of photonic crystals. Chem. Soc. Rev. 2013, 42, 2528–2554. [Google Scholar] [CrossRef] [PubMed]
- Venditti, I.; Fratoddi, I.; Palazzesi, C.; Prosposito, P.; Casalboni, M.; Cametti, C.; Battocchio, C.; Polzonetti, G.; Russo, M.V. Self-assembled nanoparticles of functional copolymers for photonic applications. J. Colloid Interface Sci. 2010, 348, 424–430. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.; Ferris, R.; Zhang, J.; Ducker, R.; Zauscher, S. Stimulus-responsive polymer brushes on surfaces: Transduction mechanisms and applications. Prog. Polym. Sci. 2010, 35, 94–112. [Google Scholar] [CrossRef]
- Samant, S.; Hailu, S.T.; Al-Enizi, A.M.; Karim, A.; Raghavan, D. Orientation Control in Nanoparticle Filled Block Copolymer Cold Zone Annealed Films. J. Polym. Sci. B 2015, 53, 604–614. [Google Scholar] [CrossRef]
- Vitale, F.; Mirenghi, L.; Piscopiello, E.; Pellegrini, G.; Trave, E.; Mattei, G.; Fratoddi, I.; Russo, M.V.; Tapfer, L.; Mazzoldi, P. Gold nanoclusters-organometallic polymer nanocomposites: Synthesis and characterization. Mater. Sci. Eng. C 2007, 27, 1300–1304. [Google Scholar] [CrossRef]
- Fratoddi, I.; Altamura, P.; Bearzotti, A.; Furlani, A.; Russo, M.V. Electrical and Morphological Characterization of Poly(Monosubstituted)Acetylene Based Membranes: Application as Humidity and Organic Vapours Sensors. Thin Solid Films 2004, 458, 292–298. [Google Scholar] [CrossRef]
- Fratoddi, I.; Battocchio, C.; Groia, A.L.; Russo, M.V. Nanostructured polymetallaynes of controlled length: Synthesis and characterization of oligomers and polymers from 1,1′-Bis-(ethynyl)4,4′-biphenyl bridging Pt(II) or Pd(II) centers. J. Polym. Sci. A 2007, 45, 3311–3329. [Google Scholar] [CrossRef]
- Kurta, R.P.; Grodd, L.; Mikayelyan, E.; Gorobtsov, O.Y.; Zaluzhnyy, I.A.; Fratoddi, I.; Venditti, I.; Russo, M.V.; Sprung, M.; Vartanyants, I.A.; et al. Local structure of semicrystalline P3HT films probed by nanofocused coherent X-rays. Phys. Chem. Chem. Phys. 2015, 17, 7404–7410. [Google Scholar] [CrossRef] [PubMed]
- Laganà, A.; Venditti, I.; Fratoddi, I.; Capriotti, A.L.; Caruso, G.; Battocchio, C.; Polzonetti, G.; Acconcia, F.; Marino, M.; Russo, M.V. Nanostructured functional copolymers bioconjugate integrin inhibitors. J. Colloid Interface Sci. 2011, 361, 465–471. [Google Scholar] [CrossRef] [PubMed]
- Venditti, I.; Fratoddi, I.; Battocchio, C.; Polzonetti, G.; Cametti, C.; Russo, M.V. Soluble polymers of monosubstituted acetylenes with quaternary ammonium pendant groups: Structure and morphology. Polym. Int. 2011, 60. [Google Scholar] [CrossRef]
- Landfester, K. Miniemulsion Polymerization and the Structure of Polymer and Hybrid Nanoparticles. Angew. Chem. Int. Ed. 2009, 48, 4488–4507. [Google Scholar] [CrossRef] [PubMed]
- D’Amato, R.; Medei, L.; Venditti, I.; Russo, M.V.; Falconieri, M. Chemical synthesis of polyphenylacetylene nanospheres with controlled dimensions for photonic crystals. Mater. Sci. Eng. C 2003, 23, 861–865. [Google Scholar] [CrossRef]
- Capek, I. On inverse miniemulsion polymerization of conventional water-soluble monomers. Adv. Colloid Interface. Sci. 2010, 156, 35–61. [Google Scholar] [CrossRef] [PubMed]
- D’Amato, R.; Venditti, I.; Russo, M.V.; Falconieri, M. Growth Control and Long range Self-assembly of Polymethylmethacrylate Nanospheres. J. Appl. Polym. Sci. 2006, 102, 4493–4499. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, Y.; Wang, S.; Song, Y.; Jiang, L. Bioinspired Colloidal Photonic Crystals with Controllable Wettability. Acc. Chem. Res. 2011, 44, 405–415. [Google Scholar] [CrossRef] [PubMed]
- Cheng, M.; Yingnan, J.; Xudong, Y.; Chuanxi, W.; Hui, L.; Fengxia, D.; Bai, Y.; Kui, Y.; Quan, L. Centrifugation-Induced Water-Tuneable Photonic Colloidal Crystalswith Narrow Diffraction Bandwidth and Highly Sensitive Detection of SCN−. ACS Appl. Mater. Interfaces 2013, 5, 1990–1996. [Google Scholar]
- De la Rue, R. News and Views. Nat. Mater. 2003, 2, 74–76. [Google Scholar] [CrossRef] [PubMed]
- Wathuthanthri, I.; Liu, Y.; Du, K.; Xu, W.; Choi, C.-H. Simple Holographic Patterning for High-Aspect-Ratio Three-Dimensional Nanostructures with Large Coverage Area. Adv. Funct. Mater. 2013, 23, 608–618. [Google Scholar] [CrossRef]
- Hatton, B.; Mishchenko, L.; Davis, S.; Sandhage, K.H.; Aizenberg, J. Assembly of large-area, highly ordered, crack-free inverse opal films. Proc. Natl. Acad. Sci. USA 2010, 107, 10354–10359. [Google Scholar] [CrossRef] [PubMed]
- De Angelis, R.; Venditti, I.; Fratoddi, I.; de Matteis, F.; Prosposito, P.; Cacciotti, I.; D’Amico, L.; Nanni, F.; Yadav, A.; Casalboni, M.; et al. From nanospheres to microribbons: Self-assembled Eosin Y doped PMMA nanoparticles as photonic crystals. J. Colloid Interface Sci. 2014, 414, 24–32. [Google Scholar] [CrossRef] [PubMed]
- Junhu, Z.; Zhiqiang, S.; Bai, Y. Self-assembly of photonic crystals from polymer colloids. Curr. Opin. Colloid Interface Sci. 2009, 14, 103–114. [Google Scholar]
- Baryshev, A.V.; Khanikaev, A.B.; Fujikawa, R.; Uchida, H.; Inoue, M. Polarized light coupling to thin silica-air opal films grown by vertical deposition. Phys. Rev. B 2007, 76, 014305. [Google Scholar] [CrossRef]
- Shen, Z.; Shi, L.; You, B.; Wu, L.; Zhao, D. Large-scale fabrication of three-dimensional ordered polymer films with strong structure colors and robust mechanical properties. J. Mater. Chem. 2012, 22, 8069–8075. [Google Scholar] [CrossRef]
- Spahn, P.; Finlayson, C.E.; Etah, W.M.; Snoswell, D.R.E.; Baumberg, J.J.; Hellmann, G.P.J. Modification of the refractive-index contrast in polymer opal films. Mater. Chem. 2011, 21, 8893–8897. [Google Scholar] [CrossRef]
- Finlayson, C.E.; Spahn, P.; Snoswell, D.R.; Yates, G.; Kontogeorgos, A.; Haines, A.I.; Hellmann, G.P.; Baumberg, J.J. 3D bulk ordering in macroscopic solid opaline films by edge-induced rotational shearing. Adv. Mater. 2011, 23, 1540–1544. [Google Scholar] [CrossRef] [PubMed]
- Finlayson, C.E.; Baumberg, J.J. Polymer opals as novel photonic materials. Polym. Int. 2013, 62, 1403–1407. [Google Scholar] [CrossRef]
- Baumberg, J.J.; Pursiainen, O.L.J.; Spahn, P. Resonant optical scattering in nanoparticle-doped polymer photonic crystals. Phys. Rev. B 2009, 80, 201103. [Google Scholar] [CrossRef]
- Schafer, C.G.; Gallei, M.; Zahn, J.T.; Engelhardt, J.; Hellmann, G.P.; Rehahn, M. Reversible Light, Thermo, and Mechano-Responsive Elastomeric Polymer Opal Films. Chem. Mater. 2013, 25, 2309–2318. [Google Scholar] [CrossRef]
- Cai, Z.; Liu, Y.J.; Lu, X.; Teng, J. Fabrication of Well-Ordered Binary Colloidal Crystals with Extended Size Ratios for Broadband Reflectance. ACS Appl. Mater. Interface 2014, 6, 10265–10273. [Google Scholar] [CrossRef] [PubMed]
- Leunissen, M.E.; Christova, C.G.; Hynninen, A.-P.; Royall, C.P.; Campbell, A.I.; Imhof, A.; Dijkstra, M.; van Roij, R.; van Blaaderen, A. Ionic colloidal crystals of oppositely charged particles. Nature 2005, 437, 235–240. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Ahl, S.; Li, Q.; Kreiter, M.; Neumann, T.; Burkert, K.; Knoll, W.; Jonas, U. Structural and Optical Characterization of 3D Binary Colloidal Crystal and Inverse Opal Films Prepared by Direct Co-Deposition. J. Mater. Chem. 2008, 18, 981–988. [Google Scholar] [CrossRef]
- Tan, K.W.; Li, G.; Koh, Y.K.; Yan, Q.; Wong, C.C. Layer-by-Layer Growth of Attractive Binary Colloidal Particles. Langmuir 2008, 24, 9273–9278. [Google Scholar] [CrossRef] [PubMed]
- Singh, G.; Pillai, S.; Arpanaei, A.; Kingshott, P. Layer-by-Layer Growth of Multicomponent Colloidal Crystals over Large Areas. Adv. Funct. Mater. 2011, 21, 2556–2563. [Google Scholar] [CrossRef]
- Hynninen, A.-P.; Thijssen, J.H.J.; Vermolen, E.C.M.; Dijkstra, M.; van Blaaderen, A. Self-assembly route for photonic crystals with a bandgap in the visible region. Nat. Mater. 2007, 6, 202–205. [Google Scholar] [CrossRef] [PubMed]
- Ngo, T.T.; Liddell, C.M.; Ghebrebrhan, M.; Joannopoulos, J.D. Tetrastack: Colloidal diamond-inspired structure with omnidirectional photonic band gap for low refractive index. Appl. Phys. Lett. 2006, 88, 241920. [Google Scholar] [CrossRef]
- Singh, G.; Gohri, V.; Pillai, S.; Arpanaei, A.; Foss, M.; Kingshott, P. Large-Area Protein Patterns Generated by Ordered Binary Colloidal Assemblies as Templates. ACS Nano 2011, 5, 3542–3551. [Google Scholar] [CrossRef] [PubMed]
- Nazemifard, N.; Wang, L.; Ye, W.; Bhattacharjee, S.; Masliyah, J.H.; Harrison, D.J. A Systematic Evaluation of the Role of Crystalline Order in Nanoporous Materials on DNA Separation. Lab Chip 2012, 12, 146–152. [Google Scholar] [CrossRef] [PubMed]
- Venditti, I.; Fratoddi, I.; Russo, M.V.; Bearzotti, A. A Nanostructured composite based on polyaniline and gold nanoparticles: Synthesis and gas sensing properties. Nanotechnology 2013, 24, 155503. [Google Scholar] [CrossRef] [PubMed]
- Stepanov, A.L. Linear optical properties of implanted metal nanoparticles in various transparent matrixes: A review. Rev. Adv. Mater. Sci. 2011, 27, 115–145. [Google Scholar]
- Fontana, L.; Fratoddi, I.; Venditti, I.; Ksenzov, D.; Russo, M.V.; Grigorian, S. Structural studies on drop-cast film based on functionalized gold nanoparticles network: The effect of thermal treatment. Appl. Surf. Sci. 2016, 369, 115–119. [Google Scholar] [CrossRef]
- Testa, G.; Fontana, L.; Venditti, I.; Fratoddi, I. Functionalized Platinum Nanoparticles with surface charge trigged by pH: Synthesis, characterization and stability studies. Beilstein J. Nanotechnol. 2016, 7, 1822–1828. [Google Scholar] [CrossRef]
- Kedia, S.; Vijaya, R.; Ray, A.K.; Sinha, S. Spectral narrowing and lasing threshold in self-assembled active photonic crystal. Opt. Commun. 2011, 284, 2056–2060. [Google Scholar] [CrossRef]
- Ding, B.Y.; Pemble, M.E.; Korovin, A.V.; Peschel, U.; Romanov, S.G. Three-dimensional photonic crystals with an active surface: Gold film terminated opals. Phys. Rev. B 2010, 82, 035119. [Google Scholar] [CrossRef]
- Venditti, I.; Barbero, N.; Russo, M.V.; di Carlo, A.; Decker, F.; Fratoddi, I.; Barolo, C.; Dini, D. Electrodeposited ZnO with squaraine sentisizers as photoactive anode of DSCs. Mater. Res. Express 2014, 1, 015040. [Google Scholar] [CrossRef]
- Fratoddi, I.; Venditti, I.; Cametti, C.; Russo, M.V. The puzzle of toxicity of gold nanoparticles. The case-study of HeLa cells. Toxicol. Res. 2015, 4, 796–800. [Google Scholar] [CrossRef]
- Venditti, I.; Fontana, L.; Fratoddi, I.; Battocchio, C.; Cametti, C.; Sennato, S.; Mura, F.; Sciubba, F.; Delfini, M.; Russo, M.V. Direct interaction of hydrophilic gold nanoparticles with dexamethasone drug: Loading and release study. J. Colloid Interface Sci. 2014, 418, 52–60. [Google Scholar] [CrossRef] [PubMed]
- Fratoddi, I.; Zampetti, E.; Venditti, I.; Battocchio, C.; Russo, M.V.; Macagnano, A.; Bearzotti, A. Platinum nanoparticles on electrospun titania nanofibers as hydrogen sensing material working at room temperature. Nanoscale 2014, 6, 9177–9184. [Google Scholar] [CrossRef] [PubMed]
- Matassa, R.; Familiari, G.; Battaglione, E.; Sibilia, C.; Leahu, G.; Belardini, A.; Venditti, I.; Fontana, L.; Fratoddi, I. Electron microscopy reveals soluble hybrid network of individual nanocrystal self-anchored by bifunctional thiol fluorescent bridges. Nanoscale 2016, 8, 18161–18169. [Google Scholar] [CrossRef] [PubMed]
- Porcaro, F.; Battocchio, C.; Antoccia, A.; Fratoddi, I.; Venditti, I.; Moreno, S.; Luisetto, I.; Russo, M.V.; Polzonetti, G. Synthesis of functionalized gold nanoparticles capped with 3-mercapto-1-propansulfonate and 1-thioglucose mixed thiols and “in vitro” bioresponse. Colloid Surf. B 2016, 142, 408–416. [Google Scholar] [CrossRef] [PubMed]
- Venditti, I.; Hassanein, T.F.; Fratoddi, I.; Fontana, L.; Battocchio, C.; Rinaldi, F.; Carafa, M.; Marianecci, C.; Diociaiuti, M.; Agostinelli, E.; et al. Bioconjugation of gold-polymer core-shell nanoparticles with bovine serum amine oxidase for biomedical applications. Colloid Surf. B 2015, 134, 314–321. [Google Scholar] [CrossRef] [PubMed]
- Bessar, H.; Venditti, I.; Fratoddi, I.; Benassi, L.; Vaschieri, C.; Azzoni, P.; Pellacani, G.; Magnoni, C.; Botti, E.; Casagrande, V.; et al. Functionalized gold nanoparticles for topical delivery of Methotrexate for the possible treatment of psoriasis. Colloid Surf. B 2016, 141, 141–147. [Google Scholar] [CrossRef] [PubMed]
- Chaudhuri, R.G.; Paria, S. Core/shell nanoparticles: Classes, properties, synthesis mechanisms, characterization, and applications. Chem. Rev. 2012, 112, 2373–2433. [Google Scholar] [CrossRef] [PubMed]
- Guerrero-Martínez, A.; Pérez-Juste, J.; Liz-Marzán, L.M. Recent progress on silicacoating of nanoparticles and related nanomaterials. Adv. Mater. 2010, 22, 1182–1195. [Google Scholar] [CrossRef] [PubMed]
- Fratoddi, I.; Venditti, I.; Battocchio, C.; Polzonetti, G.; Cametti, C.; Russo, M.V. Core shell hybrids based on noble metal nanoparticles and conjugated polymers: Synthesis and characterization. Nanoscale Res. Lett. 2011, 6, 98. [Google Scholar] [CrossRef] [PubMed]
- Bardhan, R.; Lal, S.; Joshi, A.; Halas, N.J. Theranostic Nanoshells: From Probe Design to Imaging and Treatment of Cancer. Acc. Chem. Res. 2011, 44, 936–946. [Google Scholar] [CrossRef] [PubMed]
- Qi, G.; Wang, Y.; Estevez, L.; Switzer, A.K.; Duan, X.; Yang, X.; Giannelis, E.P. Facile and scalable synthesis of monodispersed spherical capsules with a mesoporous shell. Chem. Mater. 2010, 22, 2693–2695. [Google Scholar] [CrossRef]
- Stober, W.; Fink, A.; Bohn, E. Controlled growth of monodisperse silica spheresin micron size range. J. Colloid Interface Sci. 1968, 26, 62–69. [Google Scholar] [CrossRef]
- Sun, B.; Mutch, S.A.; Lorenz, R.M.; Chiu, D.T. Layered polyelectrolyte silica coating for nanocapsules. Langmuir 2005, 21, 10763–10769. [Google Scholar] [CrossRef] [PubMed]
- Tissot, I.; Reymond, J.P.; Lefebvre, F.; Bourgeat-Lami, E. SiOH-functionalized polystyrene latexes. A step toward the synthesis of hollow silica nanoparticles. Chem. Mater. 2002, 14, 1325–1331. [Google Scholar] [CrossRef]
- Wang, L.; Asher, S.A. Fabrication of silica shell photonic crystals through flexible core templates. Chem. Mater. 2009, 21, 4608–4613. [Google Scholar] [CrossRef] [PubMed]
- Lu, Z.; Goebl, J.; Ge, J.; Yin, Y. Self-assembly and tuneable plasmonic property of gold nanoparticles on mercapto-silica microspheres. J. Mater. Chem. 2009, 19, 4597–4602. [Google Scholar] [CrossRef]
- Kumagi, H.; Yano, K. Synthesis and characterization of Au-loaded core/shell mesoporous silica spheres containing propyl group in the shell. Chem. Mater. 2010, 22, 5112–5118. [Google Scholar] [CrossRef]
- Tan, L.; Chen, D.; Liu, H.; Tang, F. A silica nanorattle with a mesoporous shell: An ideal nanoreactor for the preparation of tuneable gold cores. Adv. Mater. 2010, 22, 4885–4889. [Google Scholar] [CrossRef] [PubMed]
- Lu, Z.; Gao, C.; Zhang, Q.; Chi, M.; Howe, J.Y.; Yin, Y. Direct assembly of hydrophobic nanoparticles to multifunctional structures. Nano Lett. 2011, 11, 3404–3412. [Google Scholar] [CrossRef] [PubMed]
- Tsung, C.-K.; Hong, W.; Shi, Q.; Kou, X.; Yeung, M.H.; Wang, J.; Stucky, G.D. Shapeand orientation-controlled gold nanoparticles formed within mesoporous silica nanofibers. Adv. Funct. Mater. 2006, 16, 2225–2230. [Google Scholar] [CrossRef]
- Deng, T.S.; Marlow, F. Synthesis of monodisperse polystyrene@vinyl-SiO2 core shell particles and hollow SiO2 spheres. Chem. Mater. 2012, 24, 536–542. [Google Scholar] [CrossRef]
- Zhao, X.S.; Su, F.B.; Yan, Q.F.; Guo, W.P.; Bao, X.Y.; Lv, L.; Zhou, Z.C. Templating methods for preparation of porous structures. J. Mater. Chem. 2006, 16, 637–648. [Google Scholar] [CrossRef]
- Li, Y.; Piret, F.; Leonard, T.; Su, B.-L. Rutile TiO2 inverse opal with photonic bandgap in the UV-visible range. J. Colloid Interface Sci. 2010, 348, 43–48. [Google Scholar] [CrossRef] [PubMed]
- Galusha, J.W.; Tsung, C.K.; Stucky, G.D.; Bartl, M.H. Optimizing Sol-Gel Infiltration and Processing Methods for the Fabrication of High-Quality Planar Titania Inverse Opals. Chem. Mater. 2008, 20, 4925–4930. [Google Scholar] [CrossRef]
- Kubrin, R.; Lee, H.S.; Zierold, R.; Yu Petrov, A.; Janssen, R.; Nielsch, K.; Eich, M.; Schneider, G.A. Stacking of Ceramic Inverse Opals with Different Lattice Constants. J. Am. Ceram. Soc. 2012, 95, 2226–2235. [Google Scholar] [CrossRef]
- Lee, H.S.; Kubrin, R.; Zierold, R.; Petrov, A.Y.; Nielsch, K.; Schneider, G.A.; Eich, M. Photonic properties of titania inverse opal heterostructures. Opt. Mater. Express 2013, 3, 1007–1019. [Google Scholar] [CrossRef]
- Seo, Y.G.; Woo, K.; Kim, J.; Lee, H.; Lee, W. Rapid Fabrication of an Inverse Opal TiO2 Photoelectrode for DSSC Using a Binary Mixture of TiO2 Nanoparticles and Polymer Microspheres. Adv. Funct. Mater. 2011, 21, 3094–3103. [Google Scholar] [CrossRef]
- Rudisill, S.G.; Hein, N.M.; Terzic, D.; Stein, A. Controlling Microstructural Evolution in Pechini Gels through the Interplay between Precursor Complexation, Step-Growth Polymerization, and Template Confinement. Chem. Mater. 2013, 25, 745–753. [Google Scholar] [CrossRef]
- Zhou, J.; Li, H.; Ye, L.; Liu, J.; Wang, J.; Zhao, T.; Jiang, L.; Song, Y. Facile Fabrication of Tough SiC Inverse Opal Photonic Crystals. J. Phys. Chem. C 2010, 114, 22303–22308. [Google Scholar] [CrossRef]
- Zheng, Z.; Gao, K.; Luo, Y.; Li, D.; Meng, Q.B.; Wang, Y.; Zhang, D. Rapidly Infrared-Assisted Cooperatively Self-Assembled Highly Ordered Multiscale Porous Materials. J. Am. Chem. Soc. 2008, 130, 9785–9789. [Google Scholar] [CrossRef] [PubMed]
- Guddala, S.; Alee, K.S.; Rao, D.N. Fabrication of multifunctional SnO2 and SiO2-SnO2 inverse opal structures with prominent photonic band gap properties. Opt. Mater. Express 2013, 3, 407–417. [Google Scholar] [CrossRef]
- King, J.S.; Graugnard, E.; Summers, C. TiO2 inverse opals fabricated using low temperature atomic layer deposition. Adv. Mater. 2005, 17, 1010–1013. [Google Scholar] [CrossRef]
- Niu, W.; Li, X.; Karuturi, S.K.; Fam, D.W.; Fan, H.; Shrestha, S.; Wong, L.H.; Tok, A.I.Y. Applications of atomic layer deposition in solar cells. Nanotechnology 2015, 26, 064001. [Google Scholar] [CrossRef] [PubMed]
- Saleem, M.R.; Ali, R.; Khan, M.B.; Honkanen, S.; Turunen, J. Impact of atomic layer deposition to nanophotonic structures and device. Front. Mater. 2014, 1. [Google Scholar] [CrossRef]
- Saleem, M.; Ali, R.; Honkanen, S.; Turunen, J. Thermal properties of thin Al2O3 films and their barrier layer effect on thermo-optic properties of TiO2 films grown by atomic layer deposition. Thin Solid Films 2013, 542, 257–262. [Google Scholar] [CrossRef]
- Kubrin, R.; do Rosario, J.J.; Lee, H.S.; Mohanty, S.; Subrahmanyam, R.P.; Smirnova, I.; Petrov, A.; Petrov, A.Y.; Eich, M.; Schneider, G.A. Vertical Convective Coassembly of Refractory YSZ Inverse Opals from Crystalline Nanoparticles. ACS Appl. Mater. Interfaces 2013, 5, 13146–13152. [Google Scholar] [CrossRef] [PubMed]
- Collins, G.; Blomker, M.; Osiak, M.; Holmes, J.D.; Bredol, M.; O’Dwyer, C. Three-Dimensionally Ordered Hierarchically Porous Tin Dioxide Inverse Opals and Immobilization of Palladium Nanoparticles for Catalytic Applications. Chem. Mater. 2013, 25, 4312–4320. [Google Scholar] [CrossRef]
- Guan, G.Q.; Zapf, R.; Kolb, G.; Hessel, V.; Lowe, H.; Ye, J.H.; Zentel, R. Preferential CO oxidation over catalysts with well-defined inverse opal structures in microchannels. Int. J. Hydrogen Energy 2008, 33, 797–801. [Google Scholar] [CrossRef]
- Pavlichenko, I.; Broda, E.; Fukuda, Y.; Szendrei, K.; Hatz, A.K.; Scarpa, G.; Lugli, P.; Brauchle, C.; Lotsch, B.V. Bringing one-dimensional photonic crystals to a new light: An electrophotonic platform for chemical mass transport visualisation and cell monitoring. Mater. Horiz. 2015, 2, 299–308. [Google Scholar] [CrossRef]
- Chae, W.-S.; Lee, M.-J.; Kim, K.; Hyun, J.K.; Jeon, S. Metal-induced fluorescence proper ties of three-dimensionally ordered macroporous silver inverse opal platforms. Appl. Phys. Lett. 2016, 108, 071909. [Google Scholar] [CrossRef]
- He, L.; Huang, J.; Xu, T.; Chen, L.; Zhang, K.; Han, S.; He, Y.; Lee, S.T. Silver nanosheet-coated inverse opal film as a highly active and uniform SERS substrate. J. Mater. Chem. 2012, 22, 1370–1374. [Google Scholar] [CrossRef]
- Zhang, H.; Zhou, F.; Liu, M.; Liu, D.; Men, D.; Cai, W.; Duan, G.; Li, Y. Spherical Nanoparticle Arrays with Tuneable Nanogaps and Their Hydrophobicity Enhanced Rapid SERS Detection by Localized Concentration of Droplet Evaporation. Adv. Mater. Interfaces 2015, 2, 1500031. [Google Scholar] [CrossRef]
- Liu, J.; Jin, J.; Li, Y.; Huang, H.-W.; Wang, C.; Wu, M.; Chen, L.-H.; Su, B.-L. Tracing the slow photon effect in a ZnO inverse opal film for photocatalytic activity enhancement. J. Mater. Chem. A 2014, 2, 5051–5059. [Google Scholar] [CrossRef]
PCs | AuNPs Diameter (nm) | PCs Lattice Diameter (nm) | PCs Lattice Materials | Composite PCs Fabrication Methods | Application Fields | Reference |
---|---|---|---|---|---|---|
Opals | ~5 | 260–300 | PS | Infiltration | optics | [58] |
~40 | ~300 | PS | Infiltration | optics | [59] | |
-- | ~300 | PS | Infiltration | optics | [60] | |
-- | 520 | PS | Deposition | optics | [13] | |
~10 | ~695 | PS@SiO2 | Inclusion | optics | [61] | |
~10 | 400 | PANI | Inclusion | sensing | [62] | |
~7–10 | 300; 400 | SiO2 | CVD | optics | [36] | |
200–1000 | SiO2 | Infiltration | sensing | [63] | ||
-- | -- | SiO2 | Infiltration | biomedicine | [64] | |
Inverse opals | 12 ± 1.5 | 200; 400 | SiO2 | Infiltration | SERS | [65] |
187 ± 2; 353 ± 7 | 500–600 | SiO2 | Infiltration | optics | [66] | |
6; 30 | ~200–400 | SiO2 | Co-deposition | sensing | [34] | |
~10 | ~200 | SiO2 | Co-assembly | optics | [17] | |
~20 | 398 | TiO2 | Co-deposition | optics | [35] | |
~10 | ~200 | TiO2 | Co-deposition | photocatalysis | [67] | |
~3–5 | 155–285 | TiO2 | Co-deposition | photocatalysis | [68] |
© 2017 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Venditti, I. Gold Nanoparticles in Photonic Crystals Applications: A Review. Materials 2017, 10, 97. https://doi.org/10.3390/ma10020097
Venditti I. Gold Nanoparticles in Photonic Crystals Applications: A Review. Materials. 2017; 10(2):97. https://doi.org/10.3390/ma10020097
Chicago/Turabian StyleVenditti, Iole. 2017. "Gold Nanoparticles in Photonic Crystals Applications: A Review" Materials 10, no. 2: 97. https://doi.org/10.3390/ma10020097
APA StyleVenditti, I. (2017). Gold Nanoparticles in Photonic Crystals Applications: A Review. Materials, 10(2), 97. https://doi.org/10.3390/ma10020097