Effect of Native Defects on Transport Properties in Non-Stoichiometric CoSb3
Abstract
:1. Introduction
2. Experimental Procedures
3. Results and Discussion
3.1. Microstructure
3.2. Electric Transport Properties
3.3. Thermal Transport Properties
3.4. Figure of Merit
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Yang, J.; Xi, L.; Qiu, W.; Wu, L.; Shi, X.; Chen, L.; Yang, J.; Zhang, W.; Uher, C.; Singh, D.J. On the tuning of electrical and thermal transport in thermoelectrics: An integrated theory–experiment perspective. NPJ Comput. Mater. 2016, 2, 15015. [Google Scholar] [CrossRef]
- Kurosaki, K.; Harnwunggmoung, A.; Yamanaka, S. Thermoelectric properties of CoSb3 based skutterudites filled by group 13 elements. In Nanoscale Thermoelectrics; Wang, X., Wang, M.Z., Eds.; Springer: Cham, Switzerland, 2014; pp. 301–325. [Google Scholar]
- Liu, Y.; Li, X.; Zhang, Q.; Zhang, L.; Yu, D.; Xu, B.; Tian, Y. High pressure synthesis of p-type CeyFe4−xCoxSb12 skutterudites. Materials 2016, 9, 257. [Google Scholar] [CrossRef]
- Cohn, J.; Nolas, G.; Fessatidis, V.; Metcalf, T.; Slack, G. Glasslike heat conduction in high-mobility crystalline semiconductors. Phys. Rev. Lett. 1999, 82, 779. [Google Scholar] [CrossRef]
- Heremans, J.P.; Jovovic, V.; Toberer, E.S.; Saramat, A.; Kurosaki, K.; Charoenphakdee, A.; Yamanaka, S.; Snyder, G.J. Enhancement of thermoelectric efficiency in PbTe by distortion of the electronic density of states. Science 2008, 321, 554–557. [Google Scholar] [CrossRef] [PubMed]
- Pei, Y.; Shi, X.; LaLonde, A.; Wang, H.; Chen, L.; Snyder, G.J. Convergence of electronic bands for high performance bulk thermoelectrics. Nature 2011, 473, 66–69. [Google Scholar] [CrossRef] [PubMed]
- Dong, Y.; Puneet, P.; Tritt, T.M.; Nolas, G.S. Crystal structure and high temperature transport properties of Yb-filled p-type skutterudites YbxCo2.5Fe1.5Sb12. J. Solid State Chem. 2014, 209, 1–5. [Google Scholar] [CrossRef]
- Minnich, A.J.; Dresselhaus, M.S.; Ren, Z.F.; Chen, G. Bulk nanostructured thermoelectric materials: Current research and future prospects. Energy Environ. Sci. 2009, 2, 466–479. [Google Scholar] [CrossRef]
- Chen, Z.-G.; Han, G.; Yang, L.; Cheng, L.; Zou, J. Nanostructured thermoelectric materials: Current research and future challenge. Prog. Nat. Sci. Mater. Int. 2012, 22, 535–549. [Google Scholar] [CrossRef]
- Morelli, D.; Caillat, T.; Fleurial, J.-P.; Borshchevsky, A.; Vandersande, J.; Chen, B.; Uher, C. Low-temperature transport properties of p-type CoSb3. Phys. Rev. B 1995, 51, 9622. [Google Scholar] [CrossRef]
- Liu, W.-S.; Zhang, B.-P.; Li, J.-F.; Zhao, L.-D. Effects of Sb compensation on microstructure, thermoelectric properties and point defect of CoSb3 compound. J. Phys. D Appl. Phys. 2007, 40, 6784–6790. [Google Scholar] [CrossRef]
- Zhang, J.; Xu, B.; Yu, F.; Yu, D.; Liu, Z.; He, J.; Tian, Y. Thermoelectric properties of n-type CoSb3 fabricated with high pressure sintering. J. Alloys Compd. 2010, 503, 490–493. [Google Scholar] [CrossRef]
- Rodríguez-Carvajal, J. Recent advances in magnetic structure determination by neutron powder diffraction. Phys. B Condens. Matter 1993, 192, 55–69. [Google Scholar] [CrossRef]
- Park, C.-H.; Kim, Y.-S. Ab initio study of native point-defects in CoSb3: Understanding off-stoichiometric doping properties. Phys. Rev. B 2010, 81, 085206. [Google Scholar] [CrossRef]
- Ganichev, S.D.; Ziemann, E.; Prettl, W.; Yassievich, I.N.; Istratov, A.A.; Weber, E.R. Distinction between the poole-frenkel and tunneling models of electric-field-stimulated carrier emission from deep levels in semiconductors. Phys. Rev. B 2000, 61, 10361–10365. [Google Scholar] [CrossRef] [Green Version]
- Gutiérrez-D, E.A. Chapter 1—Physics of silicon at cryogenic temperatures—Claeys. In Low Temperature Electronics; Gutierrez-D, E., Deen, J., Claeys, C., Eds.; Academic Press: San Diego, CA, USA, 2001; pp. 1–103. [Google Scholar]
- Chen, L.; Kawahara, T.; Tang, X.; Goto, T.; Hirai, T.; Dyck, J.S.; Chen, W.; Uher, C. Anomalous barium filling fraction and n-type thermoelectric performance of BayCo4Sb12. J. Appl. Phys. 2001, 90, 1864. [Google Scholar] [CrossRef]
- Furuyama, S.; Iida, T.; Matsui, S.; Akasaka, M.; Nishio, K.; Takanashi, Y. Thermoelectric properties of undoped p-type CoSb3 prepared by vertical bridgman crystal growth and spark plasma sintering. J. Alloys Compd. 2006, 415, 251–256. [Google Scholar] [CrossRef]
- Caillat, T.; Borshchevsky, A.; Fleurial, J.P. Properties of single crystalline semiconducting CoSb3. J. Appl. Phys. 1996, 80, 4442–4449. [Google Scholar] [CrossRef]
- Park, C.-H.; Kim, Y.-S. Atomic and electronic structures of co-related point defects in CoSb3. J. Electron. Mater. 2010, 40, 962–966. [Google Scholar] [CrossRef]
- Zhang, J.X.; Lu, Q.M.; Liu, K.G.; Zhang, L.; Zhou, M.L. Synthesis and thermoelectric properties of CoSb3 compounds by spark plasma sintering. Mater. Lett. 2004, 58, 1981–1984. [Google Scholar] [CrossRef]
- Li, G.; Bajaj, S.; Aydemir, U.; Hao, S.; Xiao, H.; Goddard, W.A., III; Zhai, P.; Zhang, Q.; Snyder, G.J. P-type Co interstitial defects in thermoelectric skutterudite CoSb3 due to the breakage of Sb4-rings. Chem. Mater. 2016, 28, 2172–2179. [Google Scholar] [CrossRef]
- Liu, W.-S.; Zhang, B.-P.; Li, J.-F.; Zhao, L.-D. Thermoelectric property of fine-grained CoSb3 skutterudite compound fabricated by mechanical alloying and spark plasma sintering. J. Phys. D Appl. Phys. 2007, 40, 566–572. [Google Scholar] [CrossRef]
- Kajikawa, Y. Strong temperature dependence of the hall factor of p-type CoSb3: A re-analysis incorporating band nonparabolicity. J. Appl. Phys. 2015, 117, 055702. [Google Scholar] [CrossRef]
- Anno, H.; Matsubara, K.; Notohara, Y.; Sakakibara, T.; Tashiro, H. Effects of doping on the transport properties of CoSb3. J. Appl. Phys. 1999, 86, 3780–3786. [Google Scholar] [CrossRef]
- Mori, H.; Anno, H.; Matsubara, K. Effect of yb filling on thermoelectric properties of Ge-substituted CoSb3 skutterudites. Mater. Trans. 2005, 46, 1476–1480. [Google Scholar] [CrossRef]
- Leszczynski, J.; Ros, V.D.; Lenoir, B.; Dauscher, A.; Candolfi, C.; Masschelein, P.; Hejtmanek, J.; Kutorasinski, K.; Tobola, J.; Smith, R.I.; et al. Electronic band structure, magnetic, transport and thermodynamic properties of In-filled skutterudites InxCo4Sb12. J. Phys. D Appl. Phys. 2013, 46, 495106. [Google Scholar] [CrossRef]
- Fleurial, J.P.; Caillat, T.; Borshchevsky, A. Skutterudites: An Update. In Proceedings of the 16th International Conference on Thermoelectrics (ICT ’97), Dresden, Germany, 26–29 August 1997; pp. 1–11.
- Mi, J.-L.; Christensen, M.; Nishibori, E.; Kuznetsov, V.; Rowe, D.M.; Iversen, B.B. Multitemperature synchrotron powder diffraction and thermoelectric properties of the skutterudite La0.1Co4Sb12. J. Appl. Phys. 2010, 107, 113507. [Google Scholar] [CrossRef]
- Lukas, K.C.; Liu, W.S.; Joshi, G.; Zebarjadi, M.; Dresselhaus, M.S.; Ren, Z.F.; Chen, G.; Opeil, C.P. Experimental determination of the lorenz number in Cu0.01Bi2Te2.7Se0.3 and Bi0.88Sb0.12. Phys. Rev. B 2012, 85, 205410. [Google Scholar] [CrossRef]
- Snyder, G.J.; Toberer, E.S. Complex thermoelectric materials. Nat. Mater. 2008, 7, 105–114. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.-S.; Gibbs, Z.M.; Tang, Y.; Wang, H.; Snyder, G.J. Characterization of Lorenz number with seebeck coefficient measurement. APL Mater. 2015, 3, 041506. [Google Scholar] [CrossRef]
- Deng, L.; Jia, X.; Qin, J.; Wan, Y.; Li, J.; Ma, H. The impact of synthesis pressure on the thermoelectric properties of CoSb3. Mater. Lett. 2013, 93, 219–222. [Google Scholar] [CrossRef]
- Callaway, J.; von Baeyer, H.C. Effect of point imperfections on lattice thermal conductivity. Phys. Rev. 1960, 120, 1149–1154. [Google Scholar] [CrossRef]
- Liu, Z.; Yang, X.; Chen, G.; Zhai, P. Molecular dynamics study of the influence of Sb-vacancy defects on the lattice thermal conductivity of crystalline CoSb3. Comput. Mater. Sci. 2016, 124, 403–410. [Google Scholar] [CrossRef]
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Realyvázquez-Guevara, P.R.; Rivera-Gómez, F.J.; Faudoa-Arzate, A.; Botello-Zubiate, .E.; Sáenz-Hernández, R.J.; Santillán-Rodríguez, C.R.; Matutes-Aquino, J.A. Effect of Native Defects on Transport Properties in Non-Stoichiometric CoSb3. Materials 2017, 10, 287. https://doi.org/10.3390/ma10030287
Realyvázquez-Guevara PR, Rivera-Gómez FJ, Faudoa-Arzate A, Botello-Zubiate E, Sáenz-Hernández RJ, Santillán-Rodríguez CR, Matutes-Aquino JA. Effect of Native Defects on Transport Properties in Non-Stoichiometric CoSb3. Materials. 2017; 10(3):287. https://doi.org/10.3390/ma10030287
Chicago/Turabian StyleRealyvázquez-Guevara, Paula R., Francisco J. Rivera-Gómez, Alejandro Faudoa-Arzate, María E. Botello-Zubiate, Renee J. Sáenz-Hernández, Carlos R. Santillán-Rodríguez, and José A. Matutes-Aquino. 2017. "Effect of Native Defects on Transport Properties in Non-Stoichiometric CoSb3" Materials 10, no. 3: 287. https://doi.org/10.3390/ma10030287
APA StyleRealyvázquez-Guevara, P. R., Rivera-Gómez, F. J., Faudoa-Arzate, A., Botello-Zubiate, . E., Sáenz-Hernández, R. J., Santillán-Rodríguez, C. R., & Matutes-Aquino, J. A. (2017). Effect of Native Defects on Transport Properties in Non-Stoichiometric CoSb3. Materials, 10(3), 287. https://doi.org/10.3390/ma10030287