Electrodeposited Porous Mn1.5Co1.5O4/Ni Composite Electrodes for High-Voltage Asymmetric Supercapacitors
Abstract
:1. Introduction
2. Experiments
2.1. Preparation of MCO/Ni Electrodes and PAC/Ni Electrodes
2.2. Preparation of Gel Electrolyte and Asymmetric Supercapacitor Assembly
2.3. Sample Characterization and Electrochemical Measurements
3. Results and Discussion
3.1. Characterization of MCO
3.1.1. Structural Studies of MCO
3.1.2. SEM Studies of MCO/Ni Electrodes
3.1.3. Porosity and Surface Area Studies of MCO/Ni Electrodes
3.2. Electrochemical Studies of MCO/Ni Electrodes and PAC/(MCO/Ni) Asymmetric Supercapacitor Devices
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Xing, Y.F.; Xu, Y.H.; Shi, M.H.; Lian, Y.X. The impact of PM2.5 on the human respiratory system. J. Thorac. Dis. 2016, 8, E69–E74. [Google Scholar] [PubMed]
- Hong, C.; Zhang, Q.; He, K.; Guan, D.; Li, M.; Liu, F.; Zheng, B. Variations of China’s emission estimates: Response to uncertainties in energy statistics. Atmos. Chem. Phys. 2017, 17, 1227–1239. [Google Scholar] [CrossRef]
- Singh, R.; Shukla, A. A review on methods of flue gas cleaning from combustion of biomass. Renew. Sustain. Energy Rev. 2014, 29, 854–864. [Google Scholar] [CrossRef]
- Jacoby, M. Assessing the safety of lithium-ion batteries. Chem. Eng. News 2013, 91, 33–37. [Google Scholar]
- Wang, G.; Zhang, L.; Zhang, J. A review of electrode materials for electrochemical supercapacitors. Chem. Soc. Rev. 2012, 41, 797–828. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Lee, J.; You, J.; Park, M.S.; Hossain, M.S.A.; Yamauchi, Y.; Kim, J.H. Conductive polymers for next-generation energy storage systems: Recent progress and new functions. Mater. Horiz. 2016, 3, 517–535. [Google Scholar] [CrossRef]
- Lin, Y.P.; Wu, N.L. Characterization of MnFe2O4/LiMn2O4 aqueous asymmetric Supercapacitor. J. Power Sources 2011, 196, 851–854. [Google Scholar] [CrossRef]
- Wang, H.; Gao, Q.; Hu, J. Asymmetric capacitor based on superior porous Ni–Zn–Co oxide/hydroxide and carbon electrodes. J. Power Sources 2010, 195, 3017–3024. [Google Scholar] [CrossRef]
- Chen, H.; Hu, L.; Chen, M.; Yan, Y.; Wu, L. Nickel–Cobalt Layered Double Hydroxide Nanosheets for High-performance Supercapacitor Electrode Materials. Adv. Funct. Mater. 2014, 24, 934–942. [Google Scholar] [CrossRef]
- Young, C.; Salunkhe, R.R.; Tang, J.; Hu, C.C.; Shahabuddin, M.; Yanmaz, E.; Hossain, M.S.A.; Kim, J.H.; Yamauchi, Y. Zeolitic imidazolate framework (ZIF-8) derived nanoporous carbon: The effect of carbonization temperature on the supercapacitor performance in an aqueous electrolyte. Phys. Chem. Chem. Phys. 2016, 18, 29308–29315. [Google Scholar] [CrossRef] [PubMed]
- Zheng, X.; Ye, Y.; Yang, Q.; Geng, B.; Zhang, X. Hierarchical structures composed of MnCo2O4@MnO2 core–shell nanowire arrays with enhanced supercapacitor properties. Dalton Trans. 2016, 6, 572–578. [Google Scholar] [CrossRef] [PubMed]
- Hwang, S.M.; Kim, S.Y.; Kim, J.G.; Kim, K.J.; Lee, J.W.; Park, M.S.; Kim, Y.J.; Shahabuddin, M.; Kim, Y.J.; Yamauchi, Y.; et al. Electrospun manganese–cobalt oxide hollow nanofibres synthesized via combustion reactions and their lithium storage performance. Nanoscale 2015, 7, 8351–8355. [Google Scholar] [CrossRef] [PubMed]
- Liang, Y.; Wang, H.; Zhou, J.; Li, Y.; Wang, J.; Regier, T.; Dai, H. Covalent hybrid of spinel manganese-cobalt oxide and graphene as advanced oxygen reduction electrocatalysts, J. Am. Chem. Soc. 2012, 134, 3517–3523. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Zhu, X.; Li, M.; Tang, Q.; Sun, G.; Yang, W. Single Crystal (Mn,Co)3O4 Octahedra for Highly Efficient Oxygen Reduction Reactions. Electrochim. Acta 2014, 144, 31–41. [Google Scholar] [CrossRef]
- Salunkhe, R.R.; Kaneti, Y.V.; Kim, J.; Kim, J.H.; Yamauchi, Y. Nanoarchitectures for Metal−Organic Framework-Derived Nanoporous Carbons toward Supercapacitor Applications. Acc. Chem. Res. 2016, 49, 2796–2806. [Google Scholar] [CrossRef] [PubMed]
- Yang, P.; Mai, W. Flexible solid-state electrochemical supercapacitors. Nano Energy 2014, 8, 274–290. [Google Scholar] [CrossRef]
- Han, T.; Park, M.S.; Kim, J.; Kim, J.H.; Kim, K. The smallest quaternary ammonium salts with ether groups for high-performance electrochemical double layer capacitors. Chem. Sci. 2016, 7, 1791–1796. [Google Scholar] [CrossRef]
- Chodankar, N.R.; Dubal, D.P.; Lokhande, A.C.; Lokhande, C.D. Ionically conducting PVA–LiClO4 gel electrolyte for high performance flexible solid state supercapacitors. J. Colloid Interface Sci. 2015, 460, 370–376. [Google Scholar] [CrossRef] [PubMed]
- Chodankar, N.R.; Dubal, D.P.; Gund, G.S.; Lokhande, C.D. Flexible all-solid-state MnO2 thin films based symmetric supercapacitors. Electrochim. Acta 2015, 165, 338–347. [Google Scholar] [CrossRef]
- Aukrust, E.; Muan, A. Phase relations in the system cobalt oxide-manganese oxide air. J. Am. Ceram. Soc. 1963, 46, 511. [Google Scholar] [CrossRef]
- Kruk, M.; Jaroniec, M. Gas adsorption characterization of ordered organic-inorganic nanocomposite materials. Chem. Mater. 2001, 13, 3169–3183. [Google Scholar] [CrossRef]
- Meher, S.M.; Justin, P.; Rao, G.R. Pine-cone morphology and pseudocapacitive behavior of nanoporous nickel oxide. Electrochim. Acta 2010, 55, 8388–8396. [Google Scholar] [CrossRef]
- Wang, Y.; Guo, C.X.; Liu, J.; Chen, T.; Yang, H.; Li, C.M. CeO2 nanoparticles/graphene nanocomposite-based high performance supercapacitor. Dalton Trans. 2011, 40, 6388–6391. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.S.; Zhou, G.M.; Yin, L.C.; Ren, W.C.; Lia, F.; Cheng, H.M. Graphene/metal oxide composite electrode materials for energy storage. Nano Energy 2012, 1, 107–131. [Google Scholar] [CrossRef]
- Roble, N.; Ogbonna, J.; Tanaka, H. A novel circulating loop bioreactor with cells immobilized in loofa (Luffa cylindrica) sponge for the bioconversion of raw cassava starch to ethanol. Appl. Microbiol. Biotechnol. 2003, 60, 671–678. [Google Scholar] [CrossRef] [PubMed]
- Hao, P.; Zhao, Z.; Tian, J.; Li, H.; Sang, Y.; Yu, G.; Cai, H.; Liu, H.; Wong, C.; Umar, A. Hierarchical porous carbon aerogel derived from bagasse for high performance supercapacitor electrode. Nanoscale 2014, 6, 12120–12129. [Google Scholar] [CrossRef] [PubMed]
- Asuka, F.; Satoko, E.; Mitsuhiko, E.; Naohiko, M. Morphology of Protonated Methanol Clusters: An Infrared Spectroscopic Study of Hydrogen Bond Networks of H+(CH3OH)n (n = 4–15). J. Phys. Chem. B 2015, 109, 138–141. [Google Scholar]
- Goodenough, J.B.; Lee, H.Y. Supercapacitor Behavior with KCl Electrolyte. J. Solid State Chem. 1999, 144, 220–223. [Google Scholar]
- Shivakumara, S.; Kishore, B.; Penki, T.R.; Munichandraiah, N. Symmetric supercapacitor based on reduced graphene oxide in non-aqueous electrolyte. ECS Electrochem. Lett. 2015, 4, A87–A89. [Google Scholar] [CrossRef]
- Li, S.M.; Wang, Y.S.; Yang, S.Y.; Liu, C.H.; Chang, K.H.; Tien, H.W.; Wen, N.T.; Ma, C.C.; Hu, C.C. Electrochemical deposition of nanostructured manganese oxide on hierarchically porous graphene carbon nanotube structure for ultrahigh-performance electrochemical capacitors. J. Power Sources 2013, 225, 347–355. [Google Scholar] [CrossRef]
- Kim, M.; Kim, J. Development of high power and energy density microsphere silicon carbide–MnO2 nanoneedles and thermally oxidized activated carbon asymmetric electrochemical supercapacitors. Phys. Chem. Chem. Phys. 2014, 16, 11323–11336. [Google Scholar] [CrossRef] [PubMed]
- Tsai, Y.C.; Yang, W.D.; Lee, K.C.; Huang, C.M. An Effective Electrodeposition Mode for Porous MnO2/Ni Foam Composite for Asymmetric Supercapacitors. Materials 2016, 9, 246. [Google Scholar] [CrossRef]
Sample | SBET (m2·g−1) | Vpore (cm3·g−1) | Dp (nm) |
---|---|---|---|
Ni MF | 2 | 0.0003 | 2 |
(MCO/Ni)-7.5 min | 185 | 0.53 | 11 |
(MCO/Ni)-15 min | 166 | 0.73 | 16 |
(MCO/Ni)-30 min | 179 | 0.40 | 8 |
Asymmetric Supercapacitor | E1st a (Wh·kg−1) | P1st b (kW·kg−1) | E5000cycle c (Wh·kg−1) | P5000cycle d (kW·kg−1) |
---|---|---|---|---|
(PAC/Ni)//(MCO/Ni)-7.5 min | 24.9 | 0.97 | 22.4 | 0.87 |
(PAC/Ni)//(MCO/Ni)-15 min | 27.6 | 1.01 | 26.5 | 0.93 |
(PAC/Ni)//(MCO/Ni)-30 min | 23.2 | 0.92 | 21.4 | 0.79 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pan, G.-T.; Chong, S.; Yang, T.C.-K.; Huang, C.-M. Electrodeposited Porous Mn1.5Co1.5O4/Ni Composite Electrodes for High-Voltage Asymmetric Supercapacitors. Materials 2017, 10, 370. https://doi.org/10.3390/ma10040370
Pan G-T, Chong S, Yang TC-K, Huang C-M. Electrodeposited Porous Mn1.5Co1.5O4/Ni Composite Electrodes for High-Voltage Asymmetric Supercapacitors. Materials. 2017; 10(4):370. https://doi.org/10.3390/ma10040370
Chicago/Turabian StylePan, Guan-Ting, Siewhui Chong, Thomas C.-K. Yang, and Chao-Ming Huang. 2017. "Electrodeposited Porous Mn1.5Co1.5O4/Ni Composite Electrodes for High-Voltage Asymmetric Supercapacitors" Materials 10, no. 4: 370. https://doi.org/10.3390/ma10040370
APA StylePan, G. -T., Chong, S., Yang, T. C. -K., & Huang, C. -M. (2017). Electrodeposited Porous Mn1.5Co1.5O4/Ni Composite Electrodes for High-Voltage Asymmetric Supercapacitors. Materials, 10(4), 370. https://doi.org/10.3390/ma10040370