Structural and Optical Properties of Ag Nanoparticles Synthesized by Thermal Treatment Method
Abstract
:1. Introduction
2. Results
2.1. Mechanism of Ag Nanoparticles Formation via Thermal Treatment Method
2.2. Thermal Analysis (TGA–DTG Measurement)
2.3. Phase Composition Analysis (FTIR Spectrosscopy)
2.4. Elemental Composition Analysis (EDX Spectrosscopy)
2.5. Structural Analysis (X-ray Diffraction (XRD))
2.6. Morphology and Size Distribution (TEM Images for Ag Nanoparticles)
2.7. Optical Properties
3. Materials and Methods
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Belloni, J.; Mostafavi, M. Radiation—Induced metal clusters. Nucleation mechanism and chemistry. Met. Clust. Chem. 1999, 1213–1247. [Google Scholar]
- Fenske, D.; Schmid, G. Clusters and Colloids: From Theory to Applications; VCH: New York, NY, USA, 1994. [Google Scholar]
- Henglein, A. Small-particle research: Physicochemical properties of extremely small colloidal metal and semiconductor particles. Chem. Rev. 1989, 89, 1861–1873. [Google Scholar] [CrossRef]
- Henglein, A. Physicochemical properties of small metal particles in solution: “Microelectrode” reactions, chemisorption, composite metal particles, and the atom-to-metal transition. J. Phys. Chem. 1993, 97, 5457–5471. [Google Scholar] [CrossRef]
- Henglein, A. Electronics of colloidal nanometer particles. Ber. Bunsenges. Phys. Chem. 1995, 99, 903–913. [Google Scholar] [CrossRef]
- Gharibshahi, E.; Saion, E. Influence of dose on particle size and optical properties of colloidal platinum nanoparticles. Int. J. Mol. Sci. 2012, 13, 14723–14741. [Google Scholar] [CrossRef] [PubMed]
- Saion, E.; Gharibshahi, E.; Naghavi, K. Size-controlled and optical properties of monodispersed silver nanoparticles synthesized by the radiolytic reduction method. Int. J. Mol. Sci. 2013, 14, 7880–7896. [Google Scholar] [CrossRef] [PubMed]
- Faulds, K.; Smith, W.E.; Graham, D. Evaluation of surface-enhanced resonance raman scattering for quantitative DNA analysis. Anal. Chem. 2004, 76, 412–417. [Google Scholar] [CrossRef] [PubMed]
- Stamplecoskie, K.G.; Scaiano, J.C.; Tiwari, V.S.; Anis, H. Optimal size of silver nanoparticles for surface-enhanced raman spectroscopy. J. Phys. Chem. C 2011, 115, 1403–1409. [Google Scholar] [CrossRef]
- Haes, A.J.; Zou, S.; Schatz, G.C.; van Duyne, R.P. Nanoscale optical biosensor: Short range distance dependence of the localized surface plasmon resonance of noble metal nanoparticles. J. Phys. Chem. B 2004, 108, 6961–6968. [Google Scholar] [CrossRef]
- Purna, G.; Rao, C.; Yang, J. Chemical reduction method for preparation of silver nanoparticles on a silver chloride substrate for application in surface-enhanced infrared optical sensors. Appl. Spectrosc. 2010, 64, 1094–1099. [Google Scholar]
- Astruc, D.; Lu, F.; Aranzaes, J.R. Nanoparticles as recyclable catalysts: The frontier between homogeneous and heterogeneous catalysis. Angew. Chem. Int. Ed. 2005, 44, 7852–7872. [Google Scholar] [CrossRef] [PubMed]
- Kodom, T.; Rusen, E.; Călinescu, I.; Mocanu, A.; Şomoghi, R.; Dinescu, A.; Diacon, A.; Boscornea, C. Silver nanoparticles influence on photocatalytic activity of hybrid materials based on tio 2 p25. J. Nanomater. 2015, 2015, 210734. [Google Scholar] [CrossRef]
- Ge, L.; Li, Q.; Wang, M.; Ouyang, J.; Li, X.; Xing, M.M. Nanosilver particles in medical applications: Synthesis, performance, and toxicity. Int. J. Nanomed. 2014, 9, 2399. [Google Scholar]
- Enustun, B.; Turkevich, J. Coagulation of colloidal gold. J. Am. Chem. Soc. 1963, 85, 3317–3328. [Google Scholar] [CrossRef]
- Turkevich, J.; Stevenson, P.C.; Hillier, J. A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss. Faraday Soc. 1951, 11, 55–75. [Google Scholar] [CrossRef]
- Balu, S.; Bhakat, C.; Harke, S. Synthesis of Silver Nanoparticles by Chemical Reduction and Their Antimicrobial Activity. Int. J. Eng. Res. Technol. 2012, 1. [Google Scholar]
- Song, K.C.; Lee, S.M.; Park, T.S.; Lee, B.S. Preparation of colloidal silver nanoparticles by chemical reduction method. Korean J. Chem. Eng. 2009, 26, 153–155. [Google Scholar] [CrossRef]
- Guzmán, M.G.; Dille, J.; Godet, S. Synthesis of silver nanoparticles by chemical reduction method and their antibacterial activity. Int. J. Chem. Biomol. Eng. 2009, 2, 104–111. [Google Scholar]
- Huang, H.; Ni, X.; Loy, G.; Chew, C.; Tan, K.; Loh, F.; Deng, J.; Xu, G. Photochemical formation of silver nanoparticles in poly (n-vinylpyrrolidone). Langmuir 1996, 12, 909–912. [Google Scholar] [CrossRef]
- Mafuné, F.; Kohno, J.-Y.; Takeda, Y.; Kondow, T.; Sawabe, H. Structure and stability of silver nanoparticles in aqueous solution produced by laser ablation. J. Phys. Chem. B 2000, 104, 8333–8337. [Google Scholar] [CrossRef]
- Zaarour, M.; el Roz, M.; Dong, B.; Retoux, R.; Aad, R.; Cardin, J.; Dufour, C.; Gourbilleau, F.; Gilson, J.-P.; Mintova, S. Photochemical preparation of silver nanoparticles supported on zeolite crystals. Langmuir 2014, 30, 6250–6256. [Google Scholar] [CrossRef] [PubMed]
- Kutsenko, A.; Granchak, V. Photochemical synthesis of silver nanoparticles in polyvinyl alcohol matrices. Theor. Exp. Chem. 2009, 45, 313–318. [Google Scholar] [CrossRef]
- Huang, M.; Du, L.; Feng, J.-X. Photochemical synthesis of silver nanoparticles/eggshell membrane composite, its characterization and antibacterial activity. Sci. Adv. Mater. 2016, 8, 1641–1647. [Google Scholar] [CrossRef]
- Reetz, M.T.; Helbig, W. Size-selective synthesis of nanostructured transition metal clusters. J. Am. Chem. Soc. 1994, 116, 7401–7402. [Google Scholar] [CrossRef]
- Nasretdinova, G.R.; Fazleeva, R.R.; Mukhitova, R.K.; Nizameev, I.R.; Kadirov, M.K.; Ziganshina, A.Y.; Yanilkin, V.V. Electrochemical synthesis of silver nanoparticles in solution. Electrochem. Commun. 2015, 50, 69–72. [Google Scholar] [CrossRef]
- Starowicz, M.; Stypuła, B.; Banaś, J. Electrochemical synthesis of silver nanoparticles. Electrochem. Commun. 2006, 8, 227–230. [Google Scholar] [CrossRef]
- Surudžić, R.; Jovanović, Ž.; Bibić, N.; Nikolić, B.; Mišković-Stanković, V. Electrochemical synthesis of silver nanoparticles in poly (vinyl alcohol) solution. J. Serbian Chem. Soc. 2013, 78, 2087–2098. [Google Scholar] [CrossRef]
- Blandón, L.; Vázquez, M.V.; Benjumeab, D.M.; Cirob, G. Electrochemical synthesis of silver nanoparticles and their potential use as antimicrobial agent: A case study on Escherichia coli. Port. Electrochim. Acta 2012, 30, 135–144. [Google Scholar] [CrossRef]
- Tu, W.; Liu, H. Continuous synthesis of colloidal metal nanoclusters by microwave irradiation. Chem. Mater. 2000, 12, 564–567. [Google Scholar] [CrossRef]
- Ider, M.; Abderrafi, K.; Eddahbi, A.; Ouaskit, S.; Kassiba, A. Silver metallic nanoparticles with surface plasmon resonance: Synthesis and characterizations. J. Clust. Sci. 2016, 1–19. [Google Scholar] [CrossRef]
- Pal, A.; Shah, S.; Devi, S. Microwave-assisted synthesis of silver nanoparticles using ethanol as a reducing agent. Mater. Chem. Phys. 2009, 114, 530–532. [Google Scholar] [CrossRef]
- Nagata, Y.; Watananabe, Y.; Fujita, S.-I.; Dohmaru, T.; Taniguchi, S. Formation of colloidal silver in water by ultrasonic irradiation. J. Chem. Soc. Chem. Commun. 1992, 1620–1622. [Google Scholar] [CrossRef]
- Faried, M.; Shameli, K.; Miyake, M.; Zakaria, Z.; Hara, H.; Khairudin, N.A.; Etemadi, M. Ultrasound-assisted in the synthesis of silver nanoparticles using sodium alginate mediated by green method. Digest J. Nanomater. Biostruct. 2016, 11, 547–552. [Google Scholar]
- Manjamadha, V.; Muthukumar, K. Ultrasound assisted green synthesis of silver nanoparticles using weed plant. Bioprocess Biosyst. Eng. 2016, 39, 401–411. [Google Scholar] [CrossRef] [PubMed]
- Kumar, M.; Varshney, L.; Francis, S. Radiolytic formation of Ag clusters in aqueous polyvinyl alcohol solution and hydrogel matrix. Radiat. Phys. Chem. 2005, 73, 21–27. [Google Scholar] [CrossRef]
- Naghavi, K.; Saion, E.; Rezaee, K.; Yunus, W.M.M. Influence of dose on particle size of colloidal silver nanoparticles synthesized by gamma radiation. Radiat. Phys. Chem. 2010, 79, 1203–1208. [Google Scholar] [CrossRef]
- Uttayarat, P.; Eamsiri, J.; Tangthong, T.; Suwanmala, P. Radiolytic synthesis of colloidal silver nanoparticles for antibacterial wound dressings. Adv. Mater. Sci. Eng. 2015, 2015. [Google Scholar] [CrossRef]
- Naseri, M.G.; Saion, E.B.; Ahangar, H.A.; Hashim, M.; Shaari, A.H. Synthesis and characterization of manganese ferrite nanoparticles by thermal treatment method. J. Magn. Magn. Mater. 2011, 323, 1745–1749. [Google Scholar] [CrossRef]
- Naseri, M.G.; Saion, E.B.; Ahangar, H.A.; Shaari, A.H.; Hashim, M. Simple synthesis and characterization of cobalt ferrite nanoparticles by a thermal treatment method. J. Nanomater. 2010, 2010, 907686. [Google Scholar]
- Naseri, M.G.; Saion, E.B.; Hashim, M.; Shaari, A.H.; Ahangar, H.A. Synthesis and characterization of zinc ferrite nanoparticles by a thermal treatment method. Solid State Commun. 2011, 151, 1031–1035. [Google Scholar] [CrossRef]
- Gene, S.A.; Saion, E.; Shaari, A.H.; Kamarudin, M.A.; Al-Hada, N.M.; Kharazmi, A. Structural, optical, and magnetic characterization of spinel zinc chromite nanocrystallines synthesised by thermal treatment method. J. Nanomater. 2014, 2014, 416765. [Google Scholar] [CrossRef]
- Al-Hada, N.M.; Saion, E.B.; Shaari, A.H.; Kamarudin, M.A.; Flaifel, M.H.; Ahmad, S.H.; Gene, S.A. A facile thermal-treatment route to synthesize ZnO nanosheets and effect of calcination temperature. PLoS ONE 2014, 9, e103134. [Google Scholar]
- Al-Hada, N.M.; Saion, E.; Talib, Z.A.; Shaari, A.H. The impact of polyvinylpyrrolidone on properties of cadmium oxide semiconductor nanoparticles manufactured by heat treatment technique. Polymers 2016, 8, 113. [Google Scholar] [CrossRef]
- Keiteb, A.S.; Saion, E.; Zakaria, A.; Soltani, N.; Abdullahi, N. A modified thermal treatment method for the up-scalable synthesis of size-controlled nanocrystalline titania. Appl. Sci. 2016, 6, 295. [Google Scholar] [CrossRef]
- Keiteb, A.S.; Saion, E.; Zakaria, A.; Soltani, N. Structural and optical properties of zirconia nanoparticles by thermal treatment synthesis. J. Nanomater. 2016, 2016, 1913609. [Google Scholar] [CrossRef]
- Sivakumar, P.; Ramesh, R.; Ramanand, A.; Ponnusamy, S.; Muthamizhchelvan, C. Synthesis and characterization of NiFe2O4 nanosheet via polymer assisted co-precipitation method. Mater. Lett. 2011, 65, 483–485. [Google Scholar] [CrossRef]
- Koebel, M.M.; Jones, L.C.; Somorjai, G.A. Preparation of size-tunable, highly monodisperse PVP-protected Pt-nanoparticles by seed-mediated growth. J. Nanopart. Res. 2008, 10, 1063–1069. [Google Scholar] [CrossRef]
- Waterhouse, G.I.; Bowmaker, G.A.; Metson, J.B. The thermal decomposition of silver (I, III) oxide: A combined XRD, FT-IR and raman spectroscopic study. Phys. Chem. Chem. Phys. 2001, 3, 3838–3845. [Google Scholar] [CrossRef]
- Naseri, M.G.; Saion, E.B.; Ahangar, H.A.; Shaari, A.H. Fabrication, characterization, and magnetic properties of copper ferrite nanoparticles prepared by a simple, thermal-treatment method. Mater. Res. Bull. 2013, 48, 1439–1446. [Google Scholar] [CrossRef]
- Loría-Bastarrachea, M.; Herrera-Kao, W.; Cauich-Rodríguez, J.; Cervantes-Uc, J.; Vázquez-Torres, H.; Ávila-Ortega, A. A TG/FTIR study on the thermal degradation of poly (vinyl pyrrolidone). J. Therm. Anal. Calorim. 2010, 104, 737–742. [Google Scholar] [CrossRef]
- Giri, N.; Natarajan, R.; Gunasekaran, S.; Shreemathi, S. 13C NMR and FTIR spectroscopic study of blend behavior of pvp and nano silver particles. Arch. Appl. Sci. Res. 2011, 3, 624–630. [Google Scholar]
- Yong, N.L.; Ahmad, A.; Mohammad, A.W. Synthesis and characterization of silver oxide nanoparticles by a novel method. Int. J. Sci. Eng. Res. 2013, 4, 155–158. [Google Scholar]
- Roosen, A.R.; Carter, W.C. Simulations of microstructural evolution: Anisotropic growth and coarsening. Phys. A Stat. Mech. Appl. 1998, 261, 232–247. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, X.L.; Kim, Y.H.; Kang, Y.S. Synthesis and characterization of co nanoparticles by solventless thermal decomposition. In Solid State Phenomena; Trans Tech Publ: Zurich, Switzerland, 2007; pp. 71–74. [Google Scholar]
- Goodarz Naseri, M.; Saion, E.B.; Kamali, A. An overview on nanocrystalline ZnFe2O4, MnFe2O4, and CoFe2O4 synthesized by a thermal treatment method. ISRN Nanotechnol. 2012, 2012, 604241. [Google Scholar] [CrossRef]
- Kirshenbaum, A.; Cahill, J.; Grosse, A. The density of liquid silver from its melting point to its normal boiling point 2450 k. J. Inorg. Nuclear Chem. 1962, 24, 333–336. [Google Scholar] [CrossRef]
- Saion, E.; Gharibshahi, E. On the theory of metal nanoparticles based on quantum mechanical calculation. J. Fundam. Sci. 2011, 7, 6–11. [Google Scholar]
- Soltani, N.; Saion, E.; Erfani, M.; Rezaee, K.; Bahmanrokh, G.; Drummen, G.P.; Bahrami, A.; Hussein, M.Z. Influence of the polyvinyl pyrrolidone concentration on particle size and dispersion of ZnS nanoparticles synthesized by microwave irradiation. Int. J. Mol. Sci. 2012, 13, 12412–12427. [Google Scholar] [CrossRef] [PubMed]
- Barone, P.; Stranges, F.; Barberio, M.; Renzelli, D.; Bonanno, A.; Xu, F. Study of band gap of silver nanoparticles—Titanium dioxide nanocomposites. J. Chem. 2014, 2014, 589709. [Google Scholar] [CrossRef]
- Mie, G. Articles on the optical characteristics of turbid tubes, especially colloidal metal solutions. Ann. Phys. 1908, 25, 377–445. [Google Scholar] [CrossRef]
Temperature (°C ) | 2θ (Deg.) ± 0.01 | FWHM (Deg.) ± 0.01 | DXRD (nm) | DTEM (nm) |
---|---|---|---|---|
400 | 38.09 | 1.70 | 5.16 | 7.88 ± 4.50 |
500 | 38.08 | 1.87 | 4.70 | 5.57 ± 1.75 |
600 | 38.08 | 2.04 | 4.30 | 4.61 ± 1.96 |
700 | 38.05 | 2.38 | 3.69 | 3.75 ± 2.23 |
800 | 38.04 | 2.40 | 3.65 | 3.29 ± 1.84 |
Temperature (°C) | DTEM (nm) | Absorbance Wavelength (nm) | Conduction Band (eV) by Equation (2) | Conduction Band (eV) by Equation (3) |
---|---|---|---|---|
400 | 7.88 ± 4.50 | 450 | 2.75 | 2.75 |
500 | 5.57 ± 1.75 | 441 | 2.81 | 2.81 |
600 | 4.61 ± 1.96 | 438 | 2.83 | 2.83 |
700 | 3.75 ± 2.23 | 420 | 2.95 | 2.95 |
800 | 3.29 ± 1.84 | 407 | 3.04 | 3.04 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gharibshahi, L.; Saion, E.; Gharibshahi, E.; Shaari, A.H.; Matori, K.A. Structural and Optical Properties of Ag Nanoparticles Synthesized by Thermal Treatment Method. Materials 2017, 10, 402. https://doi.org/10.3390/ma10040402
Gharibshahi L, Saion E, Gharibshahi E, Shaari AH, Matori KA. Structural and Optical Properties of Ag Nanoparticles Synthesized by Thermal Treatment Method. Materials. 2017; 10(4):402. https://doi.org/10.3390/ma10040402
Chicago/Turabian StyleGharibshahi, Leila, Elias Saion, Elham Gharibshahi, Abdul Halim Shaari, and Khamirul Amin Matori. 2017. "Structural and Optical Properties of Ag Nanoparticles Synthesized by Thermal Treatment Method" Materials 10, no. 4: 402. https://doi.org/10.3390/ma10040402
APA StyleGharibshahi, L., Saion, E., Gharibshahi, E., Shaari, A. H., & Matori, K. A. (2017). Structural and Optical Properties of Ag Nanoparticles Synthesized by Thermal Treatment Method. Materials, 10(4), 402. https://doi.org/10.3390/ma10040402