In Situ TEM Study of Microstructure Evolution of Zr-Nb-Fe Alloy Irradiated by 800 keV Kr2+ Ions
Abstract
:1. Introduction
2. Experimental Methods
3. Results and Discussion
3.1. Microstructure Analysis of As-Received Alloy
3.2. Precipitate Growth
3.3. Nanocrystallization
4. Conclusions
- (1)
- Many β-Nb precipitates with a BCC structure are distributed in the as-received zirconium alloy with micrometer-size grains. Most of the precipitates have a globular shape. The roundness and sphericity of precipitates are about 0.90 and 0.91, respectively.
- (2)
- Kr2+ ion irradiation induces the growth of β-Nb precipitates, which is due to the segregation of the dissolved niobium atoms in zirconium crystal structure and the migration to the existing precipitates. The size of precipitates is increased with increasing Kr2+ ion fluence.
- (3)
- During Kr2+ iron irradiation, the zirconium crystals without Nb precipitates tend to transform to the nanocrystals, which is not observed in the zirconium crystals with Nb nanoparticles. The existing Nb nanoparticles are the key factor that constrains the nanocrystallization of zirconium crystals. The thickness of the formed Zr-nanocrystal layer is about 300 nm, which is consistent with the depth of Kr2+ iron irradiation.
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Gabory, B.D.; Motta, A.T.; Wang, K. Transmission electron microscopy characterization of Zircaloy-4 and ZIRLO™ oxide layers. J. Nucl. Mater. 2015, 456, 272–280. [Google Scholar] [CrossRef]
- Ran, G.; Xu, J.; Shen, Q.; Zhang, J.; Wang, L.M. In situ TEM observation of growth behavior of Kr bubbles in zirconium alloy during post-implantation annealing. Nucl. Instrum. Methods Phys. Res. B 2013, 307, 516–521. [Google Scholar] [CrossRef]
- Younker, I.; Fratoni, M. Neutronic evaluation of coating and cladding materials for accident tolerant fuels. Prog. Nucl. Energ. 2016, 88, 10–18. [Google Scholar] [CrossRef]
- Christensen, M.; Angeliu, T.M.; Ballard, J.D.; Vollmer, J.; Najafabadi, R.; Wimmer, E. Effect of impurity and alloying elements on Zr grain boundary strength from first-principles computations. J. Nucl. Mater. 2010, 404, 121–127. [Google Scholar] [CrossRef]
- Robson, J.D. Modeling precipitate evolution in zirconium alloys during irradiation. J. Nucl. Mater. 2016, 476, 123–131. [Google Scholar] [CrossRef]
- Shen, H.H.; Zhang, J.M.; Peng, S.M.; Xiang, X.; Sun, K.; Zu, X.T. In situ TEM investigation of amorphization and recrystallization of Zr (Fe, Cr, Nb)2 precipitates under Ne ion irradiation. Vacuum 2014, 110, 24–29. [Google Scholar] [CrossRef]
- Yan, C.; Wang, R.; Wang, Y.; Wang, X.; Bai, G. Effects of ion irradiation on microstructure and properties of zirconium alloys-A review. Nucl. Eng. Technol. 2015, 47, 323–331. [Google Scholar] [CrossRef]
- Charit, I.; Murty, K.L. Creep behavior of niobium-modified zirconium alloys. J. Nucl. Mater. 2008, 374, 354–363. [Google Scholar] [CrossRef]
- Shishov, V.N.; Peregud, M.M.; Nikulina, A.V.; Shebaldov, P.V.; Tselischev, A.V.; Novoselov, A.E.; Kobylyansky, G.P.; Ostrovsky, Z.E.; Shamardin, V.K. Influence of zirconium alloy chemical composition on microstructure formation and irradiation induced growth. In Zirconium in the Nuclear Industry: Thirteenth International Symposium; ASTM International: Conshohocken, PA, USA, 2002. [Google Scholar]
- Shen, H.H.; Peng, S.M.; Chen, B.; Naab, F.N.; Sun, G.A.; Zhou, W.; Xiang, X.; Sun, K.; Zu, X.T. Helium bubble evolution in a Zr–Sn–Nb–Fe–Cr alloy during post-annealing: An in-situ investigation. Mater. Charact. 2015, 107, 309–316. [Google Scholar] [CrossRef]
- Choi, S.I.; Kim, J.H. Radiation-induced dislocation and growth behavior of zirconium and zirconium alloys—A review. Nucl. Eng. Technol. 2013, 45, 385–392. [Google Scholar] [CrossRef]
- Lei, P.H.; Ran, G.; Liu, C.W.; Shen, Q.; Zhang, R.Q.; Ye, C.; Li, N.; Yang, P.H.; Yang, Y.C. Microstructure analysis of Kr+ irradiation and post-irradiation corrosion of modified N36 zirconium alloy. Nucl. Instrum. Methods Phys. Res. B. [CrossRef]
- Arjhangmehr, A.; Feghhi, S.A.H. Irradiation deformation near different atomic grain boundaries in α-Zr: An investigation of thermodynamics and kinetics of point defects. Sci. Rep. 2016, 6, 23333. [Google Scholar] [CrossRef] [PubMed]
- Ghidelli, M.; Gravier, S.; Blandin, J.-J.; Djemia, P.; Mompiou, F.; Abadias, G.; Pardoen, J.-R. Extrinsic mechanical size effects in thin ZrNi metallic glass films. Acta Mater. 2015, 90, 232–241. [Google Scholar] [CrossRef]
- Ghidelli, M.; Volland, A.; Blandin, J.-J.; Pardoen, T.; Raskin, J.P.; Mompiou, F.; Djemia, P.; Gravier, S. Exploring the mechanical size effects in Zr65Ni35 thin film metallic glasses. J. Alloys Compd. 2014, 615, S90–S92. [Google Scholar] [CrossRef]
- Huang, S.L.; Ran, G.; Lei, P.H.; Chen, N.J.; Wu, S.H.; Li, N.; Shen, Q. Effect of crystal orientation on hardness of He+ ion irradiated tungsten. Nucl. Instrum. Methods Phys. Res. B 2017. [Google Scholar] [CrossRef]
- Kim, H.G.; Kim, Y.H.; Choi, B.K.; Jeong, Y.H. Effect of alloying elements (Cu, Fe, and Nb) on the creep properties of Zr alloys. J. Nucl. Mater. 2006, 359, 268–273. [Google Scholar] [CrossRef]
- Ko, S.; Hong, S.I.; Kim, K.T. Creep properties of annealed Zr–Nb–O and stress-relieved Zr–Nb–Sn–Fe cladding tubes and their performance comparison. J. Nucl. Mater. 2010, 404, 154–159. [Google Scholar] [CrossRef]
- Byun, T.S.; Farrel, K. Irradiation hardening behavior of polycrystalline metals after low temperature irradiation. J. Nucl. Mater. 2004, 326, 86–96. [Google Scholar] [CrossRef]
- Li, Q.; Liu, W.Q.; Zhou, B.X. Effect of the deformation and heat treatment on the decomposition of β-Zr in Zr-Sn-Nb alloys. Rare Met. Mater. Eng. 2002, 31, 389–392. [Google Scholar]
- Liu, W.Q.; Li, Q.; Zhou, B.X.; Yao, M.Y. Effect of the microstructure on the corrosion resistance of ZIRLO alloy. Nucl. Power Eng. 2003, 24, 33–36. [Google Scholar]
- Liu, W.; Li, Q.; Zhou, B.; Yan, Q.; Yao, M. Effect of heat treatment on the microstructure and corrosion resistance of a Zr–Sn–Nb–Fe–Cr alloy. J. Nucl. Mater. 2005, 341, 97–102. [Google Scholar] [CrossRef]
- Perovic, V.; Perovic, A.; Weatherly, G.C.; Purdy, G.R. The distribution of Nb and Fe in a Zr-2.5 wt % Nb alloy before and after irradiation. J. Nucl. Mater. 1995, 224, 93–102. [Google Scholar] [CrossRef]
- Shishov, V.N.; Barberis, P.; Dean, S.W. The evolution of microstructure and deformation stability in Zr–Nb–(Sn,Fe) alloys under neutron irradiation. J. ASTM Int. 2010, 7, 479–500. [Google Scholar] [CrossRef]
- Shishov, V.N.; Peregud, M.M.; Nikulina, A.V.; Pimenov, Y.V.; Kobylyansky, G.P.; Novoselov, A.E.; Ostrovsky, Z.E.; Obukhov, A.V. Influence of structure—Phase state of Nb containing Zr alloys on irradiation-induced growth. J. ASTM Int. 2005, 2, 201–218. [Google Scholar] [CrossRef]
- Doriot, S.; Gilbon, D.; Béchade, J.-L.; Mathon, M.-H.; Legras, L.; Mardon, J.-P. Microstructural Stability of M5TM Alloy Irradiated up to High Neutron Fluences. J. ASTM Int. 2005, 2, 1–24. [Google Scholar]
- Kai, J.J.; Huang, W.I.; Chou, H.Y. The microstructural evolution of zircaloy-4 subjected to proton irradiation. J. Nucl. Mater. 1990, 170, 193–209. [Google Scholar] [CrossRef]
- Hernandez-Mayoral, M.; Heintze, C.; Onorbe, E. Transmission electron microscopy investigation of the microstructure of Fe-Cr alloys induced by neutron and ion irradiation at 300 degrees C. J. Nucl. Mater. 2016, 474, 88–98. [Google Scholar] [CrossRef]
- Was, G.S.; Busby, J.T.; Allen, T.; Kenik, E.A.; Jenssen, A.; Bruemmer, S.M.; Gan, J.; Edwards, A.D.; Scott, P.M.; Andresen, P.L. Emulation of neutron irradiation effects with protons: Validation of principle. J. Nucl. Mater. 2012, 300, 198–216. [Google Scholar] [CrossRef]
- Standard Practice for Neutron Radiation Damage Simulation by Charged-Particle Irradiation; ASTM International: West Conshohocken, PA, USA, 2009; ASTM-E-521–96.
- Turkin, A.A.; Buts, A.V.; Bakai, A.S. Construction of radiation-modified phase diagrams under cascade-producing irradiation: Application to Zr–Nb alloy. J. Nucl. Mater. 2002, 305, 134–152. [Google Scholar] [CrossRef]
- Nikulina, A.V.; Markelov, V.A.; Peregud, M.M.; Voevodin, V.N.; Panchenko, V.L.; Kobylyansky, G.P. Irradiation-induced microstructural changes in Zr-1% Sn-1% Nb-0.4% Fe. J. Nucl. Mater. 1996, 238, 205–210. [Google Scholar] [CrossRef]
- Wan, F.R. Irradiation Damage of Metallic Materials; Beijing Science Press: Beijing, China, 1993; pp. 23–127. [Google Scholar]
- Doriot, S.; Gilbon, D.; Bechade, J.L.; Mathon, M.H.; Legras, L.; Mardon, J.P. Microstructural stability of M5 (TM) alloy irradiated up to high neutron fluences. J. ASTM Int. 2005, 2, 175–198. [Google Scholar] [CrossRef]
- Perovic, V.; Perovic, A.; Weatherly, G.C.; Brown, L.M.; Purdy, G.R.; Fleck, R.G.; Holtl, R.A. Microstructural and microchemical studies of Zr-2.5 Nb pressure tube alloy. J. Nucl. Mater. 1993, 205, 251–257. [Google Scholar] [CrossRef]
- Ran, G.; Huang, S.L.; Huang, Z.J.; Yan, Q.Z.; Xu, J.K.; Li, N.; Wang, L.M. In situ Observation of Microstructure Evolution in Tungsten under 400keV Kr+ Irradiation. J. Nucl. Mater. 2014, 455, 320–324. [Google Scholar] [CrossRef]
- Kato, N.I. Reducing focused ion beam damage to transmission electron microscopy samples. J. Electron. Microsc. 2004, 53, 451–458. [Google Scholar] [CrossRef]
- Wollenberger, H. Phase transformations under irradiation. J. Nucl. Mater. 1994, 216, 63–77. [Google Scholar] [CrossRef]
- Russell, K.C. Phase instability under cascade damage irradiation. J. Nucl. Mater. 1993, 206, 129–138. [Google Scholar] [CrossRef]
- Szenes, G. Physics of Irradiation Effects in Metals. Mater. Sci. Forum 1992, 23, 97–99. [Google Scholar]
- Bai, X.M.; Voter, A.F.; Hoagland, R.G.; Nastasi, M.; Uberuaga, B.P. Efficient annealing of radiation damage near grainboundaries via interstitial emission. Science 2012, 327, 1631–1634. [Google Scholar] [CrossRef] [PubMed]
- Odette, G.R.; Alinger, M.J.; Wirth, B.D. Recent Developments in Irradiation-Resistant Steels. Annu. Rev. Mater. Res. 2008, 38, 471–503. [Google Scholar] [CrossRef]
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lei, P.; Ran, G.; Liu, C.; Ye, C.; Lv, D.; Lin, J.; Wu, Y.; Xu, J. In Situ TEM Study of Microstructure Evolution of Zr-Nb-Fe Alloy Irradiated by 800 keV Kr2+ Ions. Materials 2017, 10, 437. https://doi.org/10.3390/ma10040437
Lei P, Ran G, Liu C, Ye C, Lv D, Lin J, Wu Y, Xu J. In Situ TEM Study of Microstructure Evolution of Zr-Nb-Fe Alloy Irradiated by 800 keV Kr2+ Ions. Materials. 2017; 10(4):437. https://doi.org/10.3390/ma10040437
Chicago/Turabian StyleLei, Penghui, Guang Ran, Chenwei Liu, Chao Ye, Dong Lv, Jianxin Lin, Yizhen Wu, and Jiangkun Xu. 2017. "In Situ TEM Study of Microstructure Evolution of Zr-Nb-Fe Alloy Irradiated by 800 keV Kr2+ Ions" Materials 10, no. 4: 437. https://doi.org/10.3390/ma10040437
APA StyleLei, P., Ran, G., Liu, C., Ye, C., Lv, D., Lin, J., Wu, Y., & Xu, J. (2017). In Situ TEM Study of Microstructure Evolution of Zr-Nb-Fe Alloy Irradiated by 800 keV Kr2+ Ions. Materials, 10(4), 437. https://doi.org/10.3390/ma10040437