Understanding the Stress Relaxation Behavior of Polymers Reinforced with Short Elastic Fibers
Abstract
:1. Introduction
1.1. Polymer Viscoelasticity
1.2. Micromechanics of Short-Fiber Composites
1.3. Modelling Approach
2. Proposed Model
3. Parametric Study
3.1. Properties of the Matrix and Fiber
3.2. Effect of Fiber Content
3.3. Effect of Fiber Aspect Ratio
4. Monte Carlo Finite-Element Analysis
4.1. Modelling Approach
4.2. FEA Results
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Eftekhari, M.; Fatemi, A. On the strengthening effect of increasing cyclic frequency on fatigue behavior of some polymers and their composites: Experiments and modeling. Int. J. Fatigue 2016, 87, 153–166. [Google Scholar] [CrossRef]
- Eftekhari, M.; Fatemi, A. Creep behavior and modeling of neat, talc-filled, and short glass fiber reinforced thermoplastics. Compos. Part B Eng. 2016, 97, 68–83. [Google Scholar] [CrossRef]
- Blackley, D.C.; Pike, N.T. Viscoelastic properties of fiber-filled elastomers. 3. Properties of elastomer materices. Kautsch. Gummi, Kunstst. 1978, 31, 16–25. [Google Scholar]
- Bhagawan, S.S.; Tripathy, D.K.; De, S.K. Stress relaxation in short jute fiber-reinforced nitrile rubber composites. J. Appl. Polym. Sci. 1987, 33, 1623–1639. [Google Scholar] [CrossRef]
- Flink, P.; Stenberg, B. An indirect method which ranks the adhesion in natural rubber filled with different types of cellulose fibres by plots of E(t)/E(t = 0) versus logt. Br. Polym. J. 1990, 22, 193–199. [Google Scholar] [CrossRef]
- Kutty, S.K.; Nando, G.B. Short Kevlar fiber-thermoplastic polyurethane composite. J. Appl. Polym. Sci. 1991, 43, 1913–1923. [Google Scholar] [CrossRef]
- Suhara, F.; Kutty, S.K.; Nando, G.B. Stress relaxation of polyester fiber-polyurethane elastomer composite with different interfacial bonding agents. J. Elastom. Plastics 1998, 30, 103–117. [Google Scholar]
- Pothan, L.A.; Neelakantan, N.R.; Rao, B.; Thomas, S. Stress relaxation behavior of banana fiber-reinforced polyester composites. J. Reinforced Plastics Compos. 2004, 23, 153–165. [Google Scholar] [CrossRef]
- Bhattacharyya, D.; Manikath, J.; Jayaraman, K. Stress relaxation of woodfiber-thermoplastic composites. J. Appl. Polym. Sci. 2006, 102, 401–407. [Google Scholar] [CrossRef]
- Saeed, U.; Hussain, K.; Rizvi, G. HDPE reinforced with glass fibers: Rheology, tensile properties, stress relaxation, and orientation of fibers. Polym. Compos. 2014, 35, 2159–2169. [Google Scholar] [CrossRef]
- Boukettaya, S.; Almaskari, F.; Abdala, A.; Alawar, A.; Daly, H.B.; Hammami, A. Water absorption and stress relaxation behavior of PP/date palm fiber composite materials. In Design and Modeling of Mechanical Systems -II; Chouchance, M., Fakhfakh, T., Daly, H., Aifaoui, N., Chaari, F., Eds.; Springer: Hammamet, Tunisia, 2015; pp. 437–445. [Google Scholar]
- Wang, Y.; Cao, J.; Zhu, L.; Zhao, G. Interfacial compatibility of wood flour/polypropylene composites by stress relaxation method. J. Appl. Polym. Sci. 2012, 126, 89–95. [Google Scholar] [CrossRef]
- Sreekala, M.S.; Kumaran, M.G.; Joseph, R.; Thomas, S. Stress relaxation behavior in composites based on short oil-palm fibres and phenol formaldehyde resins. Compos. Sci. Technol. 2001, 61, 1175–1188. [Google Scholar] [CrossRef]
- Stan, F.; Fetecau, C. Study of stress relaxation in polytetraflyoroethylene composites by cylindrical macroindentation. Compos. Part B. Eng. 2013, 47, 298–307. [Google Scholar] [CrossRef]
- George, J.; Sreekala, M.S.; Thomas, S.; Bhagawan, S.S.; Neelakantan, N.R. Stress relaxation behavior of short pineapple fiber reinforced polyethylene composites. J. Reinforced Plastics Compos. 1998, 17, 651–672. [Google Scholar]
- Geethamma, V.G.; Pothen, L.A.; Rhao, B.; Neelakantan, N.R.; Thomas, S. Tensile stress relaxation of short-coir-fiber reinforced natural rubber composites. J. Appl. Polym. Sci. 2004, 94, 96–104. [Google Scholar] [CrossRef]
- Mirzaei, B.; Tajvidi, M.; Falk, R.H.; Felton, C. Stress relaxation behavior of lignocellulosic-high density polyethylene composites. J. Reinforced Plastics Compos. 2011, 30, 875–881. [Google Scholar] [CrossRef]
- Somashekar, A.A.; Bickerton, S.; Battacharyya, D. Modelling the viscoelastic stress relaxation of glass fibre reinforcement under constant compaction strain during composites manufacturing. Compos. Part A 2012, 43, 1044–1052. [Google Scholar] [CrossRef]
- Safraoui, L.; Haddout, A.; Benhadou, M.; Rhrich, F.; Villoutreix, G. Experimental study and modeling of the relaxation behavior of the injected polypropylene composites reinforced with short glass fibers. Int. J. Emerg. Technol. Adv. Eng. 2014, 4, 81–87. [Google Scholar]
- Drozdov, A.D.; Al-Mulla, A.; Gupta, R.K. The viscoelastic and viscoplastic behavior of polymer composites: polycarbonate reinforced with short glass fibers. Comput. Mater. Sci. 2003, 28, 16–30. [Google Scholar] [CrossRef]
- Naik, A.; Abolfathi, N.; Karami, G.; Ziejewski, M. Micromechanical viscoelastic characterization of Fibrous Composites. J. Compos. Mater. 2008, 42, 1179–1204. [Google Scholar] [CrossRef]
- Brinson, L.C.; Lin, W.S. Comparison of micromechanics methods for effective properties of multiphase viscoelastic composites. Compos. Struct. 2013, 41, 353–367. [Google Scholar] [CrossRef]
- Fisher, F.T.; Brinson, L.C. Viscoelastic interphases in polymer-matrix composites: Theoretical models and finite-element analysis. Compos. Sci. Technol. 2003, 61, 731–748. [Google Scholar] [CrossRef]
- Zhang, J.; He, C. A three-phase cylindrical shear-lag model for carbon nanotube composites. Acta. Mech. 2008, 196, 33–54. [Google Scholar] [CrossRef]
- Smith, N.; Medvedev, G.A.; Pipes, R.B. Viscoelastic shear lag analysis of the discontinuous fiber composite. In Proceedings of the 19th International Conference on Composite Materials, Montreal, QC, Canada, 28 July–2 August 2013. [Google Scholar]
- Yancey, R.N.; Pindera, M.J. Micromechanical analysis of the creep response of unidirectional composites. J. Eng. Mater. Techol. 1990, 112, 157–163. [Google Scholar] [CrossRef]
- Barbero, E.J.; Luciano, R. Micromechanical formulas for the relaxation tensor of linear viscoelastic composites with transversely isotropic fibers. Int. J. Solids Struct. 1995, 32, 1859–1872. [Google Scholar] [CrossRef]
- Merodio, J. On constitutive equations for fiber-reinforced nonlinear viscoelastic solids. Mech. Res. Commun. 2006, 33, 764–770. [Google Scholar] [CrossRef]
- Piggott, M.R.; Taplin, D.M.R. Load Bearing Fiber Composites; Pergamon Press: New York, NY, USA, 1980. [Google Scholar]
- Nairn, J.A. On the use of shear-lag methods for analysis of stress transfer in unidirectional composites. Mech. Mater. 1997, 26, 63–80. [Google Scholar] [CrossRef]
- Mukunda, V.G.; Dharani, L.R. A comparison of classical and consistent shear lag methods for failure analysis of unidirectional composites. Eng. Fract. Mech. 1993, 45, 865–874. [Google Scholar] [CrossRef]
- Pegoretti, A.; Fambri, L.; Migliaresi, C. Interfacial shear stress transfer in nylon-6/E-glass microcomposites: effect of temperature and strain rate. Polym. Compos. 2000, 21, 466–475. [Google Scholar] [CrossRef]
- Kalaprasad, G.; Joseph, K.; Thomas, S.; Pavithran, C. Theoretical modelling of tensile properties of short sisal fibre-reinforced low-density polyethylene composites. J. Mater. Sci. 1997, 32, 4261–4267. [Google Scholar] [CrossRef]
- Migneault, S.; Koubaa, A.; Erchiqui, F.; Chaala, A.; Englund, K.; Wolcot, M.P. Application of micromechanical models to tensile properties of wood-plastic composites. Wood Sci. Technol. 2010, 45, 521–532. [Google Scholar] [CrossRef]
- Kim, H.G.; Kwac, L.K. Evaluation of elastic modulus for unidirectionally aligned short fiber composites. J. Mech. Sci. Technol. 2009, 23, 54–63. [Google Scholar] [CrossRef]
- Gibson, R.F. Principles of Composite Material Mechanics, 3rd ed.; CRC Press: Boca Raton, FL, USA, 2011. [Google Scholar]
- Wallenberger, F.; Watson, J.; Li, H. Glass Fibers. In ASM Handbook, vol. 21–Composites; Miracle, D.B., Donaldson, S.L., Eds.; ASM International: Geauga, OH, USA, 2001. [Google Scholar]
- Facca, A.G.; Kortschot, M.T.; Yan, N. Predicting the elastic modulus of natural fibre reinforced thermoplastics. Compos. Part A 2006, 37, 1660–1671. [Google Scholar] [CrossRef]
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Obaid, N.; Kortschot, M.T.; Sain, M. Understanding the Stress Relaxation Behavior of Polymers Reinforced with Short Elastic Fibers. Materials 2017, 10, 472. https://doi.org/10.3390/ma10050472
Obaid N, Kortschot MT, Sain M. Understanding the Stress Relaxation Behavior of Polymers Reinforced with Short Elastic Fibers. Materials. 2017; 10(5):472. https://doi.org/10.3390/ma10050472
Chicago/Turabian StyleObaid, Numaira, Mark T. Kortschot, and Mohini Sain. 2017. "Understanding the Stress Relaxation Behavior of Polymers Reinforced with Short Elastic Fibers" Materials 10, no. 5: 472. https://doi.org/10.3390/ma10050472
APA StyleObaid, N., Kortschot, M. T., & Sain, M. (2017). Understanding the Stress Relaxation Behavior of Polymers Reinforced with Short Elastic Fibers. Materials, 10(5), 472. https://doi.org/10.3390/ma10050472