An All Oxide-Based Imperceptible Thin-Film Transistor with Humidity Sensing Properties
Abstract
:1. Introduction
2. Results and Discussion
2.1. Resistivity of ITO Via Gas Ratio and Thickness
2.2. Contact Resistivity of ITO/IGZO and Mo/IGZO
2.3. Electrical Performance
2.4. Mechanical Stability and Optical Property
2.5. Humidity Sensing Performance
3. Materials and Methods
3.1. Preparation of Substrate
3.2. Fabrication of TFTs
3.3. Evaluation of Films and TFTs
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Nomura, K.; Ohta, H.; Takagi, A.; Kamiya, T.; Hirano, M.; Hosono, H. Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors. Nature 2004, 432, 488–492. [Google Scholar] [CrossRef] [PubMed]
- Flexible Electronics: Materials and Applications; Wong, W.S.; Salleo, A. (Eds.) Springer Science & Business Media: Berlin, Germany, 2009; Volume 11. [Google Scholar]
- Sekitani, T.; Zschieschang, U.; Klauk, H.; Someya, T. Flexible organic transistors and circuits with extreme bending stability. Nat. Mater. 2010, 9, 1015–1022. [Google Scholar] [CrossRef] [PubMed]
- Bettinger, C.J.; Bao, Z. Organic thin-film transistors fabricated on resorbable biomaterial substrates. Adv. Mater. 2010, 22, 651–655. [Google Scholar] [CrossRef] [PubMed]
- Fukuda, K.; Takeda, Y.; Yoshimura, Y.; Shiwaku, R.; Tran, L.T.; Sekine, T.; Tokito, S. Fully-printed high-performance organic thin-film transistors and circuitry on one-micron-thick polymer films. Nat. Commun. 2014, 5. [Google Scholar] [CrossRef] [PubMed]
- He, Q.; Zeng, Z.; Yin, Z.; Li, H.; Wu, S.; Huang, X.; Zhang, H. Fabrication of flexible MoS2 thin-film transistor arrays for practical gas-sensing applications. Small 2012, 8, 2994–2999. [Google Scholar] [CrossRef] [PubMed]
- Someya, T.; Sekitani, T.; Iba, S.; Kato, Y.; Kawaguchi, H.; Sakurai, T. A large-area, flexible pressure sensor matrix with organic field-effect transistors for artificial skin applications. Proc. Natl. Acad. Sci. USA 2004, 101, 9966–9970. [Google Scholar] [CrossRef] [PubMed]
- He, Q.; Wu, S.; Gao, S.; Cao, X.; Yin, Z.; Li, H.; Zhang, H. Transparent, flexible, all-reduced graphene oxide thin film transistors. ACS Nano 2011, 5, 5038–5044. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Agarwal, M.; Varahramyan, K. Glucose sensor based on organic thin film transistor using glucose oxidase and conducting polymer. Sens. Actuators B 2008, 135, 195–199. [Google Scholar] [CrossRef]
- Schwartz, G.; Tee, B.C.K.; Mei, J.; Appleton, A.L.; Kim, D.H.; Wang, H.; Bao, Z. Flexible polymer transistors with high pressure sensitivity for application in electronic skin and health monitoring. Nat. Commun. 2013, 4, 1859. [Google Scholar] [CrossRef] [PubMed]
- Williams, D.E. Semiconducting oxides as gas-sensitive resistors. Sens. Actuators B 1999, 57, 1–16. [Google Scholar] [CrossRef]
- Sakai, G.; Matsunaga, N.; Shimanoe, K.; Yamazoe, N. Theory of gas-diffusion controlled sensitivity for thin film semiconductor gas sensor. Sens. Actuators B 2001, 80, 125–131. [Google Scholar] [CrossRef]
- Yamazoe, N.; Shimizu, Y. Humidity sensors: Principles and applications. Sens. Actuators 1986, 10, 379–398. [Google Scholar] [CrossRef]
- Wagh, M.S.; Jain, G.H.; Patil, D.R.; Patil, S.A.; Patil, L.A. Modified zinc oxide thick film resistors as NH3 gas sensor. Sens. Actuators B 2006, 115, 128–133. [Google Scholar] [CrossRef]
- Ansari, S.G.; Boroojerdian, P.; Sainkar, S.R.; Karekar, R.N.; Aiyer, R.C.; Kulkarni, S.K. Grain size effects on H2 gas sensitivity of thick film resistor using SnO2 nanoparticles. Thin Solid Films 1997, 295, 271–276. [Google Scholar] [CrossRef]
- Zhang, Y.; Xu, J.; Xu, P.; Zhu, Y.; Chen, X.; Yu, W. Decoration of ZnO nanowires with Pt nanoparticles and their improved gas sensing and photocatalytic performance. Nanotechnology 2010, 21, 285501. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Yu, K.; Gu, C.; Zhai, M.; Wu, Y.; Yang, M.; Liu, J. Preparation of porous flower-shaped SnO2 nanostructures and their gas-sensing property. Sens. Actuators B 2010, 147, 467–474. [Google Scholar] [CrossRef]
- Lyson-Sypien, B.; Kusior, A.; Rekas, M.; Zukrowski, J.; Gajewska, M.; Michalow-Mauke, K.; Zakrzewska, K. Nanocrystalline TiO2/SnO2 heterostructures for gas sensing. Beilstein J. Nanotechnol. 2017, 8, 108–122. [Google Scholar] [CrossRef] [PubMed]
- Jeong, J.K.; Won Yang, H.; Jeong, J.H.; Mo, Y.G.; Kim, H.D. Origin of threshold voltage instability in indium-gallium-zinc oxide thin film transistors. Appl. Phys. Lett. 2008, 93, 123508. [Google Scholar] [CrossRef]
- Conley, J.F. Instabilities in amorphous oxide semiconductor thin-film transistors. IEEE Trans. Device Mater. Reliab. 2010, 10, 460–475. [Google Scholar] [CrossRef]
- Sung, S.Y.; Choi, J.H.; Han, U.B.; Lee, K.C.; Lee, J.H.; Kim, J.J.; Heo, Y.W. Effects of ambient atmosphere on the transfer characteristics and gate-bias stress stability of amorphous indium-gallium-zinc oxide thin-film transistors. Appl. Phys. Lett. 2010, 96, 102107. [Google Scholar] [CrossRef]
- Kang, W.J.; Ahn, C.H.; Yun, M.G.; Cho, S.W.; Kim, Y.K.; Kim, D.E.; Kim, B.R.; Cho, H.K.; Kim, Y.S. Expedient floating process for ultra-thin InGaZnO thin-film-transistors and their high bending performance. RSC Adv. 2016, 6, 63418–63424. [Google Scholar] [CrossRef]
- Ray, S.; Banerjee, R.; Basu, N.; Batabyal, A.K.; Barua, A.K. Properties of tin doped indium oxide thin films prepared by magnetron sputtering. J. Appl. Phys. 1983, 54, 3497–3501. [Google Scholar] [CrossRef]
- Yu, H.H.; Hwang, S.J.; Tseng, M.C.; Tseng, C.C. The effect of ITO films thickness on the properties of flexible organic light emitting diode. Opt. Commun. 2006, 259, 187–193. [Google Scholar] [CrossRef]
- Bender, M.; Seelig, W.; Daube, C.; Frankenberger, H.; Ocker, B.; Stollenwerk, J. Dependence of oxygen flow on optical and electrical properties of DC-magnetron sputtered ITO films. Thin Solid Films 1998, 326, 72–77. [Google Scholar] [CrossRef]
- Kim, H.; Horwitz, J.S.; Kushto, G.; Pique, A.; Kafafi, Z.H.; Gilmore, C.M.; Chrisey, D.B. Effect of film thickness on the properties of indium tin oxide thin films. J. Appl. Phys. 2000, 88, 6021–6025. [Google Scholar] [CrossRef]
- Schroder, D.K. Semiconductor Materials and Device Characterization; John Wiley & Sons: Hoboken, NJ, USA, 2006. [Google Scholar]
- Rha, S.H.; Jung, J.S.; Jung, Y.S.; Chung, Y.J.; Kim, U.K.; Hwang, E.S.; Park, B.K.; Park, T.J.; Choi, J.H.; Hwang, C.S. Performance variation according to device structure and the source/drain metal electrode of a-IGZO TFTs. IEEE Trans. Electron Devices 2012, 59, 3357–3363. [Google Scholar] [CrossRef]
- Wang, W.; Li, L.; Lu, C.; Liu, Y.; Lv, H.B.; Xu, G.W.; Ji, Z.; Liu, M. Analysis of the contact resistance in amorphous InGaZnO thin film transistors. Appl. Phys. Lett. 2015, 107, 063504. [Google Scholar] [CrossRef]
- Bürgi, L.; Rechards, T.J.; Friend, R.H.; Sirringhaus, H. Close look at charge carrier injection in polymer field-effect transistors. J. Appl. Phys. 2003, 94, 6129–6137. [Google Scholar] [CrossRef]
- Ahn, C.H.; Kim, S.H.; Kim, Y.K.; Lee, H.S.; Cho, H.K. Effect of post-annealing temperatures on thin-film transistors with ZnO/Al2O3 superlattice channels. Thin Solid Films 2015, 584, 336–340. [Google Scholar] [CrossRef]
- Chiang, C.S.; Martin, S.; Kanicki, J.; Ugai, Y.; Yukawa, T.; Takeuchi, S. Top-gate staggered amorphous silicon thin-film transistors: Series resistance and nitride thickness effects. Jpn. J. Appl. Phys. 1998, 37, 5917. [Google Scholar]
- Park, J.S.; Jeong, J.K.; Chung, H.J.; Mo, Y.G.; Kim, H.D. Electronic transport properties of amorphous indium-gallium-zinc oxide semiconductor upon exposure to water. Appl. Phys. Lett. 2008, 92, 072104. [Google Scholar] [CrossRef]
- Naik, G.; Krishnaswamy, S. Room-temperature humidity sensing using graphene oxide thin films. Graphene 2016, 5, 1–13. [Google Scholar] [CrossRef]
- Garde, A.S. Humidity sensing properties of WO3 thick film resistor prepared by screen printing technique. J. Alloys Compd. 2014, 617, 367–373. [Google Scholar] [CrossRef]
- Arshak, K.; Twomey, K. Thin films of In2O3/SiO for humidity sensing applications. Sensors 2002, 2, 205–218. [Google Scholar] [CrossRef]
- Niarchos, G.; Dubourg, G.; Afroudakis, G.; Georgopoulos, M.; Tsouti, V.; Makarona, E.; Crnojevic-Bengin, V.; Tsamis, C. Humidity sensing properties of paper substrates and their passivation with ZnO nanoparticles for sensor applications. Sensors 2017, 17, 516–526. [Google Scholar] [CrossRef] [PubMed]
- Raj, A.M.E.S.; Mallika, C.; Swaminathan, K.; Sreedharan, O.M.; Nagaraja, K.S. Zinc (II) oxide-zinc (II) molybdate composite humidity sensor. Sens. Actuators B 2002, 81, 229–236. [Google Scholar]
- Zhang, M.; Hu, C.; Liu, H.; Xiong, Y.; Zhang, Z. A rapid-response humidity sensor based on BaNbO3 nanocrystals. Sens. Actuators B 2009, 136, 128–132. [Google Scholar] [CrossRef]
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, K.S.; Ahn, C.H.; Kang, W.J.; Cho, S.W.; Jung, S.H.; Yoon, D.H.; Cho, H.K. An All Oxide-Based Imperceptible Thin-Film Transistor with Humidity Sensing Properties. Materials 2017, 10, 530. https://doi.org/10.3390/ma10050530
Kim KS, Ahn CH, Kang WJ, Cho SW, Jung SH, Yoon DH, Cho HK. An All Oxide-Based Imperceptible Thin-Film Transistor with Humidity Sensing Properties. Materials. 2017; 10(5):530. https://doi.org/10.3390/ma10050530
Chicago/Turabian StyleKim, Kyung Su, Cheol Hyoun Ahn, Won Jun Kang, Sung Woon Cho, Sung Hyeon Jung, Dae Ho Yoon, and Hyung Koun Cho. 2017. "An All Oxide-Based Imperceptible Thin-Film Transistor with Humidity Sensing Properties" Materials 10, no. 5: 530. https://doi.org/10.3390/ma10050530
APA StyleKim, K. S., Ahn, C. H., Kang, W. J., Cho, S. W., Jung, S. H., Yoon, D. H., & Cho, H. K. (2017). An All Oxide-Based Imperceptible Thin-Film Transistor with Humidity Sensing Properties. Materials, 10(5), 530. https://doi.org/10.3390/ma10050530