Immobilization of TiO2 Nanoparticles on Chlorella pyrenoidosa Cells for Enhanced Visible-Light-Driven Photocatalysis
Abstract
:1. Introduction
2. Experimental
2.1. Materials
2.2. Synthesis of Chlorella/TiO2 Composite
2.3. Characterization
2.4. Photocatalytic Activity Measurements
3. Results and Discussion
4. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Bazri, B.; Lin, Y.; Lu, T.; Chen, C.; Kowsari, E.; Hu, S.; Liu, R. A heteroelectrode structure for solar water splitting: Integrated cobalt ditelluride across a TiO2-passivated silicon microwire array. Catal. Sci. Technol. 2017, 7, 1488–1496. [Google Scholar] [CrossRef]
- Hu, J.; Cao, Y.; Wang, K.; Jia, D. Green solid-state synthesis and photocatalytic hydrogen production activity of anatase TiO2 nanoplates with super heat-stability. RSC Adv. 2017, 7, 11827–11833. [Google Scholar] [CrossRef]
- Lee, Y.-S.; Gopi, C.V.V.M.; Eswar, R.A.; Nagaraju, C.; Kim, H. High performance of TiO2/CdS quantum dot sensitized solar cells with a Cu-ZnS passivation layer. New J. Chem. 2017, 41, 1914–1917. [Google Scholar] [CrossRef]
- Gao, X.; Li, J.; Gollon, S.; Qiu, M.; Guan, D.; Guo, X.; Chen, J.; Yuan, C. A TiO2 nanotube network electron transport layer for high efficiency perovskite solar cells. Phys. Chem. Chem. Phys. 2017, 19, 4956–4961. [Google Scholar] [CrossRef] [PubMed]
- Yao, Y.; Qin, J.; Chen, H.; Wei, F.; Liu, X.; Wang, J.; Wang, S. One-pot approach for synthesis of N-doped TiO2/ZnFe2O4 hybrid as an efficient photocatalyst for degradation of aqueous organic pollutants. J. Hazard. Mater. 2015, 291, 28–37. [Google Scholar] [CrossRef] [PubMed]
- Ullah, K.; Ye, S.; Lei, Z.; Cho, K.; Oh, W. Synergistic effect of PtSe2 and graphene sheets supported by TiO2 as cocatalysts synthesized via microwave techniques for improved photocatalytic activity. Catal. Sci. Technol. 2015, 5, 184–198. [Google Scholar] [CrossRef]
- Ji, S.M.; Jun, H.; Jang, J.S.; Son, H.C.; Borse, P.H.; Lee, J.S. Photocatalytic hydrogen production from natural seawater. J. Photochem. Photobiol. A 2007, 189, 141–144. [Google Scholar] [CrossRef]
- Ho, W.; Yu, J.C. Sonochemical synthesis and visible light photocatalytic behavior of CdSe and CdSe/TiO2 nanoparticles. J. Mol. Catal. A 2006, 247, 268–274. [Google Scholar] [CrossRef]
- Jagadale, T.C.; Takale, S.P.; Sonawane, R.S.; Joshi, H.M.; Patil, S.I.; Kale, B.B.; Ogale, S.B. N-doped TiO2 nanoparticle based visible light photocatalyst by modified peroxide sol−gel method. J. Phys. Chem. C 2008, 112, 14595–14602. [Google Scholar] [CrossRef]
- Niu, M.; Cui, R.; Wu, H.; Cheng, D.; Cao, D. Enhancement mechanism of the conversion effficiency of dye-sensitized solar cells based on nitrogen-, fluorine-, and iodine-doped TiO2 photoanodes. J. Phys. Chem. C 2015, 119, 13425–13432. [Google Scholar] [CrossRef]
- Zhang, H.; Tao, Z.; Tang, Y.; Yang, M.; Wang, G. One-step modified method for a highly efficient Au-PANI@TiO2 visible-light photocatalyst. New J. Chem. 2016, 40, 8587–8592. [Google Scholar] [CrossRef]
- Tu, Y.D.; Zhou, Z.; Yan, R.J.; Gan, Y.P.; Huang, W.Z.; Weng, X.X.; Huang, H.; Zhang, W.K.; Tao, X.Y. Bio-template synthesis of spirulina/TiO2 composite with enhanced photocatalytic performance. RSC Adv. 2012, 2, 10585–10591. [Google Scholar] [CrossRef]
- Xia, Y.; Zhang, W.; Huang, H.; Gan, Y.; Xiao, Z.; Qian, L.; Tao, X. Biotemplating of phosphate hierarchical rechargeable LiFePO4/C spirulina microstructures. J. Mater. Chem. 2011, 21, 6498–6501. [Google Scholar] [CrossRef]
- Nagappan, S.; Park, J.J.; Park, S.S.; Lee, W.; Ha, C. Bio-inspired, multi-purpose and instant superhydrophobic-superoleophilic lotus leaf powder hybrid micro-nanocomposites for selective oil spill capture. J. Mater. Chem. A 2013, 1, 6761–6769. [Google Scholar] [CrossRef]
- Hu, P.; Hu, X.; Chen, C.; Hou, D.; Huang, Y. Biomaterial-assisted synthesis of AgCl@Ag concave cubes with efficient visible-light-driven photocatalytic activity. CrystEngComm 2014, 16, 649–653. [Google Scholar] [CrossRef]
- Zhou, H.; Fan, T.; Li, X.; Zhang, D.; Guo, Q.; Ogawa, H. Biomimetic photocatalyst system derived from the natural prototype in leaves for efficient visible-light-driven catalysis. J. Mater. Chem. 2009, 19, 2695–2703. [Google Scholar] [CrossRef]
- Cai, A.; Du, L.; Wang, Q.; Chang, Y.; Wang, X.; Guo, X. Kelp-inspired N–I-doped ZnO photocatalysts with highly efficient catalytic activity. Mater. Sci. Semicond. Proc. 2016, 43, 25–33. [Google Scholar] [CrossRef]
- Cai, A.; Sun, Y.; Chang, Y.; Guo, A.; Du, L. Biopolymer-assisted in situ route toward Cu hollow spheres as antibacterial materials. Mater. Lett. 2014, 134, 214–217. [Google Scholar] [CrossRef]
- Cai, A.; Wang, X.; Qi, Y.; Ma, Z. Hierarchical ZnO/S,N:GQD composites: Biotemplated synthesis and enhanced visible-light-driven photocatalytic activity. Appl. Surf. Sci. 2017, 391, 484–490. [Google Scholar] [CrossRef]
- Bu, Y.; Chen, Z.; Li, W.; Hou, B. Highly efficient photocatalytic performance of graphene-ZnO quasi-shell-core composite material. ACS Appl. Mater. Interfaces 2013, 5, 12361–12368. [Google Scholar] [CrossRef] [PubMed]
- Cai, A.; Wang, Q.; Chang, Y.; Wang, X. Graphitic carbon nitride decorated with S,N co-doped graphene quantum dots for enhanced visible-light-driven photocatalysis. J. Alloys Compd. 2017, 692, 183–189. [Google Scholar] [CrossRef]
- Jacob, N.M.; Madras, G.; Kottam, N.; Thomas, T. Multivalent Cu-doped ZnO nanoparticles with full solar spectrum absorbance and enhanced photoactivity. Ind. Eng. Chem. Res. 2014, 53, 5895–5904. [Google Scholar] [CrossRef]
- Xing, M.; Li, W.; Wu, Y.; Zhang, J.; Gong, X. Formation of new structures and their synergistic effects in boron and nitrogen codoped TiO2 for Enhancement of photocatalytic performance. J. Phys. Chem. C 2011, 115, 7858–7865. [Google Scholar] [CrossRef]
- Shi, N.; Li, X.; Fan, T.; Zhou, H.; Ding, J.; Zhang, D.; Zhu, H. Biogenic N–I-codoped TiO2 photocatalyst derived from kelp for efficient dye degradation. Energy Environ. Sci. 2011, 4, 172–180. [Google Scholar] [CrossRef]
- Quero, F.; Nogi, M.; Lee, K.; Poel, G.V.; Bismarck, A.; Mantalaris, A.; Yano, H.; Eichhorn, S.J. Cross-linked bacterial cellulose networks using glyoxalization. ACS Appl. Mater. Interfaces 2010, 3, 490–499. [Google Scholar] [CrossRef] [PubMed]
- Shah, M.S.A.S.; Park, A.R.; Zhang, K.; Park, J.H.; Yoo, P.J. Green synthesis of biphasic TiO2—Reduced graphene oxide nanocomposites with highly enhanced photocatalytic activity. ACS Appl. Mater. Interfaces 2012, 4, 3893–3901. [Google Scholar] [CrossRef] [PubMed]
- Wen, Y.; Ding, H.; Shan, Y. Preparation and visible light photocatalytic activity of Ag/TiO2/graphene nanocomposite. Nanoscale 2011, 3, 4411–4417. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Lin, Y.; Xie, T.; Shi, S.; Fan, H.; Wang, D. Enhancement of visible-light-driven photoresponse of Mn/ZnO system: Photogenerated charge transfer properties and photocatalytic activity. Nanoscale 2012, 4, 6393–6400. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Lv, X.; Li, Y.; Wang, Y.; Li, J. P25-graphene composite as a high performance photocatalyst. ACS Nano 2010, 4, 380–386. [Google Scholar] [CrossRef] [PubMed]
- Yuan, J.; Zhou, S.; Wu, L.; You, B. Organic pigment particles coated with titania via sol−gel process. J. Phys. Chem. B 2006, 110, 388–394. [Google Scholar] [CrossRef] [PubMed]
- Du, J.; Zhang, J.; Liu, Z.; Han, B.; Jiang, T.; Huang, Y. Controlled synthesis of Ag/TiO2 core-shell nanowires with smooth and bristled surfaces via a one-step solution route. Langmuir 2006, 22, 1307–1312. [Google Scholar] [CrossRef] [PubMed]
- Rehman, S.; Ullah, R.; Butt, A.M.; Gohar, N.D. Strategies of making TiO2 and ZnO visible light active. J. Hazard. Mater. 2009, 170, 560–569. [Google Scholar] [CrossRef] [PubMed]
- Yan, S.C.; Li, Z.S.; Zou, Z.G. Photodegradation of rhodamine B and methyl orange over boron-doped g-C3N4 under visible light irradiation. Langmuir 2010, 26, 3894–3901. [Google Scholar] [CrossRef] [PubMed]
- Cho, S.; Jang, J.; Lee, J.S.; Lee, K. Carbon-doped ZnO nanostructures synthesized using vitamin C for visible light photocatalysis. CrystEngComm 2010, 12, 3929–3935. [Google Scholar] [CrossRef]
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cai, A.; Guo, A.; Ma, Z. Immobilization of TiO2 Nanoparticles on Chlorella pyrenoidosa Cells for Enhanced Visible-Light-Driven Photocatalysis. Materials 2017, 10, 541. https://doi.org/10.3390/ma10050541
Cai A, Guo A, Ma Z. Immobilization of TiO2 Nanoparticles on Chlorella pyrenoidosa Cells for Enhanced Visible-Light-Driven Photocatalysis. Materials. 2017; 10(5):541. https://doi.org/10.3390/ma10050541
Chicago/Turabian StyleCai, Aijun, Aiying Guo, and Zichuan Ma. 2017. "Immobilization of TiO2 Nanoparticles on Chlorella pyrenoidosa Cells for Enhanced Visible-Light-Driven Photocatalysis" Materials 10, no. 5: 541. https://doi.org/10.3390/ma10050541
APA StyleCai, A., Guo, A., & Ma, Z. (2017). Immobilization of TiO2 Nanoparticles on Chlorella pyrenoidosa Cells for Enhanced Visible-Light-Driven Photocatalysis. Materials, 10(5), 541. https://doi.org/10.3390/ma10050541