The Rejuvenating Effect in Hot Asphalt Recycling by Mortar Transfer Ratio and Image Analysis
Abstract
:1. Introduction
2. Experiment Materials
3. Experimental Methods
3.1. Mortar Transfer Ratio
3.2. Micro-Crack Closure
4. Results Analysis
4.1. Mortar Transfer Ratio
4.2. Image Analysis
4.3. Micro-Crack Closure
5. Conclusions
- (1)
- The results of the experiment demonstrate that the mortar transfer ratio test of asphalt is a feasible way to evaluate the rejuvenator diffusion during hot recycling. The mortar transfer ratio and uncovered area ratio on fresh aggregates are compatible, and can be used to quantify the rejuvenator contribution.
- (2)
- Within in a certain temperature range, the diffusion effect of the rejuvenator is better when the diffusion temperature is higher. Four to eight hours of diffusing time is already enough for optimal diffusion effect.
- (3)
- When the rejuvenator was properly applied, the rough and cracking surface was repaired, resulting in better covered aggregates. The micro-closure analysis visually demonstrates that rejuvenators can be used to repair the RAP aggregates during hot recycling.
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Pan, P.; Wu, S.; Xiao, Y.; Liu, G. A review on hydronic asphalt pavement for energy harvesting and snow melting. Renew. Sustain. Energy Rev. 2015, 48, 624–634. [Google Scholar] [CrossRef]
- Cui, P.; Wu, S.; Xiao, Y.; Wan, M.; Cui, P. Inhibiting effect of Layered Double Hydroxides on the emissions of volatile organic compounds from bituminous materials. J. Clean. Prod. 2015, 108, 987–991. [Google Scholar] [CrossRef]
- Cui, P.; Wu, S.; Xiao, Y.; Zhang, H. Study on the deteriorations of bituminous binder resulted from volatile organic compounds emissions. Constr. Build. Mater. 2014, 68, 644–649. [Google Scholar] [CrossRef]
- Coons, R.F.; Wright, P.H. An Investigation of the Hardening of Asphalt Recovered from Pavements of Various Ages. J. Assoc. Asph. Paving Technol. 1965, 37, 510–528. [Google Scholar]
- Pan, P.; Wu, S.; Hu, X.; Wang, P.; Liu, Q. Effect of freezing-thawing and ageing on thermal characteristics and mechanical properties of conductive asphalt concrete. Constr. Build. Mater. 2017, 140, 239–247. [Google Scholar] [CrossRef]
- Chen, Z.; Wu, S.; Xiao, Y.; Zeng, W.; Yi, M.; Wan, J. Effect of hydration and silicone resin on Basic Oxygen Furnace slag and its asphalt mixture. J. Clean. Prod. 2016, 112, 392–400. [Google Scholar] [CrossRef]
- Johnson, A.M. Best Practices Handbook on Asphalt Pavement Maintenance; Bleeding; University of Minnesota: Minneapolis, MN, USA, 2000. [Google Scholar]
- Patil, M.S.B.; Patil, D.S. Evaluation of Cost Effective Material for Maintenance of Flexible Pavement. Int. J. Sci. Eng. Res. 2013, 4, 72–78. [Google Scholar]
- Lin, J.; Guo, P.; Wan, L.; Wu, S. Laboratory investigation of rejuvenator seal materials on performances of asphalt mixtures. Constr. Build. Mater. 2012, 37, 41–45. [Google Scholar] [CrossRef]
- Lin, J.; Guo, P.; Xie, J.; Wu, S.; Chen, M. Effect of Rejuvenator Sealer Materials on the Properties of Aged Asphalt Binder. J. Mater. Civ. Eng. 2013, 25, 829–835. [Google Scholar] [CrossRef]
- Lin, J.; Hong, J.; Huang, C.; Liu, J.; Wu, S. Effectiveness of rejuvenator seal materials on performance of asphalt pavement. Constr. Build. Mater. 2014, 55, 63–68. [Google Scholar] [CrossRef]
- Hu, X.; Wang, N.; Pan, P.; Bai, T. Performance evaluation of asphalt mixture using brake pad waste as mineral filler. Constr. Build. Mater. 2017, 138, 410–417. [Google Scholar] [CrossRef]
- Shen, J.; Amirkhanian, S.; Miller, J.A. Effects of Rejuvenating Agents on Superpave Mixtures Containing Reclaimed Asphalt Pavement. J. Mater. Civ. Eng. 2007, 19, 376–384. [Google Scholar] [CrossRef]
- Zaumanis, M.; Mallick, R.B.; Frank, R. Determining optimum rejuvenator dose for asphalt recycling based on Superpave performance grade specifications. Constr. Build. Mater. 2014, 69, 159–166. [Google Scholar] [CrossRef]
- Ma, T.; Huang, X.; Zhao, Y.; Zhang, Y. Evaluation of the diffusion and distribution of the rejuvenator for hot asphalt recycling. Constr. Build. Mater. 2015, 98, 530–536. [Google Scholar] [CrossRef]
- Xiao, Y.; Li, C.; Wan, M.; Zhou, X.; Wang, Y.; Wu, S. Study of the Diffusion of Rejuvenators and Its Effect on Aged Bitumen Binder. Appl. Sci. 2017, 7, 397. [Google Scholar] [CrossRef]
- Brownbridge, J. The Role of an Asphalt Rejuvenator in Pavement Preservation: Use and Need for Asphalt Rejuvenation. In Proceedings of the International Conference on Pavement Preservation, Newport Beach, CA, USA, 12–16 April 2010. [Google Scholar]
- Karlsson, R.; Isacsson, U. Application of FTIR-ATR to Characterization of Bitumen Rejuvenator Diffusion. J. Mater. Civ. Eng. 2003, 15, 157–165. [Google Scholar] [CrossRef]
- Navaro, J.; Bruneau, D.; Drouadaine, I.; Colin, J.; Dony, A.; Cournet, J. Observation and evaluation of the degree of blending of reclaimed asphalt concretes using microscopy image analysis. Constr. Build. Mater. 2012, 37, 135–143. [Google Scholar] [CrossRef]
- Ministry of Transport. Standard Test Methods of Bitumen and Bituminous Mixtures for Highway Engineering: JTG E20-2011; China Communications Press: Beijing, China, 2011. [Google Scholar]
- Ma, T.; Huang, X.; Zhao, Y.; Zhang, Y.; Wang, H. Influences of Preheating Temperature of RAP on Properties of Hot-Mix Recycled Asphalt Mixture. J. Test. Eval. 2016, 44, 762–769. [Google Scholar] [CrossRef]
- Li, X.G.; Lv, Y.; Ma, B.G.; Chen, Q.B.; Yin, X.B.; Jian, S.W. Utilization of municipal solid waste incineration bottom ash in blended cement. J. Clean. Prod. 2012, 32, 96–100. [Google Scholar] [CrossRef]
- Lee, S.-H.; Park, D.-W.; Vo, H.V.; Dessouky, S. Asphalt Mixture for the First Asphalt Concrete Directly Fastened Track in Korea. Adv. Mater. Sci. Eng. 2015, 2015, 701940. [Google Scholar] [CrossRef]
- Merusi, F.; Caruso, A.; Roncella, R.; Giuliani, F. Moisture Susceptibility and Stripping Resistance of Asphalt Mixtures Modified with Different Synthetic Waxes. Transp. Res. Rec. J. Transp. Res. Board 2010, 2180, 110–120. [Google Scholar] [CrossRef]
- Wu, S. Assessment of bonding behaviours between ultrathin surface layer and asphalt mixture layer using modified pull test. J. Adhes. Sci. Technol. 2015, 29, 1–14. [Google Scholar]
- Sun, D.; Sun, G.; Zhu, X.; Pang, Q.; Yu, F.; Lin, T. Identification of wetting and molecular diffusion stages during self-healing process of asphalt binder via fluorescence microscope. Constr. Build. Mater. 2017, 132, 230–239. [Google Scholar] [CrossRef]
Properties | Values | Specifications | Test Method |
---|---|---|---|
Penetration (25 °C) [0.1 mm] | 85 | 80–100 | T0604-2011 |
Softening point [°C] | 44 | ≥44 | T0604-2011 |
Ductility, 5 cm/min, 15 °C [cm] | >100 | >100 | T0605-2011 |
Wax content [wt %] | 0.83 | ≤3.0 | T0615-2011 |
Flash point (COC) [°C] | 300 | ≥245 | T0611-2011 |
Solubility (C2HCl3) [wt %] | 99.7 | ≥99.5 | T0607-2011 |
Properties | Rejuvenator A | Rejuvenator B | Test Method |
---|---|---|---|
Form | Liquid | Liquid | |
Color | pink | Brown | |
pH | 4.8 | 5.6 | pH test paper |
Viscosity (25 °C), SFS | 40 | 15 | ASTM D-244 |
Solute component [wt %] | 65 | 60 | ASTM D-244 |
Regeneration component [wt %] | 8 | 8 | ASTM D-2006-70 |
Asphaltene component [wt %] | 0.4 | 0.75 |
Wa [kg] | Wm [kg] | T [°C] | t [h] | Fresh Aggregates | TR [%] | ||
---|---|---|---|---|---|---|---|
Wf [g] | Wr [g] | Grain Number | |||||
1.3322 | 1.4072 | 35 | 2 | 498.9 | 504.2 | 17 | 7.07 |
1.3306 | 1.4056 | 35 | 4 | 501.1 | 509.1 | 18 | 10.67 |
1.3232 | 1.3982 | 35 | 8 | 499.4 | 506.5 | 19 | 9.20 |
1.3246 | 1.3996 | 35 | 24 | 496.1 | 502.6 | 19 | 8.67 |
1.3356 | 1.4106 | 20 | 8 | 498.2 | 501.4 | 19 | 4.29 |
1.3356 | 1.4106 | 50 | 8 | 498.5 | 505.0 | 19 | 8.67 |
Wa [kg] | Wm [kg] | T [°C] | t [h] | Fresh Aggregates | TR [%] | ||
---|---|---|---|---|---|---|---|
Wf [g] | Wr [g] | Grain Number | |||||
1.3382 | 1.4132 | 35 | 2 | 479.6 | 486.9 | 19 | 9.73 |
1.3402 | 1.4152 | 35 | 4 | 494.2 | 500.9 | 19 | 8.93 |
1.3466 | 1.4216 | 35 | 8 | 480.6 | 488.4 | 19 | 10.40 |
1.3321 | 1.4071 | 35 | 24 | 414.1 | 420.9 | 19 | 9.07 |
1.3512 | 1.4262 | 20 | 8 | 407.3 | 414.2 | 19 | 9.20 |
1.3545 | 1.4295 | 50 | 8 | 493.3 | 502.2 | 19 | 11.87 |
Test Condition | Uncovered Ratio for A Treated Specimen (%) | Uncovered Ratio for B Treated Specimen (%) |
---|---|---|
T = 35 °C; t = 2 h | 47.31 | 45.20 |
T = 35 °C; t = 4 h | 39.30 | 40.80 |
T = 35 °C; t = 8 h | 28.24 | 32.98 |
T = 35 °C; t = 24 h | 48.46 | 46.57 |
T = 20 °C; t = 8 h | 57.74 | 36.78 |
T = 50 °C; t = 8 h | 23.13 | 26.53 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, F.; Wang, Z.; Li, C.; Xiao, Y.; Wu, S.; Pan, P. The Rejuvenating Effect in Hot Asphalt Recycling by Mortar Transfer Ratio and Image Analysis. Materials 2017, 10, 574. https://doi.org/10.3390/ma10060574
Wang F, Wang Z, Li C, Xiao Y, Wu S, Pan P. The Rejuvenating Effect in Hot Asphalt Recycling by Mortar Transfer Ratio and Image Analysis. Materials. 2017; 10(6):574. https://doi.org/10.3390/ma10060574
Chicago/Turabian StyleWang, Fusong, Zipeng Wang, Chao Li, Yue Xiao, Shaopeng Wu, and Pan Pan. 2017. "The Rejuvenating Effect in Hot Asphalt Recycling by Mortar Transfer Ratio and Image Analysis" Materials 10, no. 6: 574. https://doi.org/10.3390/ma10060574
APA StyleWang, F., Wang, Z., Li, C., Xiao, Y., Wu, S., & Pan, P. (2017). The Rejuvenating Effect in Hot Asphalt Recycling by Mortar Transfer Ratio and Image Analysis. Materials, 10(6), 574. https://doi.org/10.3390/ma10060574