Plasmonic Light Scattering in Textured Silicon Solar Cells with Indium Nanoparticles from Normal to Non-Normal Light Incidence
Abstract
:1. Introduction
2. Experiments and Light-Trapping Modes
2.1. Experiments
2.1.1. Bare Textured C-Si Solar Cells: Fabrication and Characterization
2.1.2. Plasmonic Textured C-Si Solar Cell Fabrication and Characterization
2.2. Light-Trapping Modes
2.2.1. Light-Trapping Modes of Textured Surface
2.2.2. Light-Trapping Mode of a Textured Surface with In NPs
3. Results and Discussion
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Joel, J.; Patrick, R.B.; Robert, L.J.; Tonio, B.; Vladimir, B. Pathways for solar photovoltaics. Energy Environ. Sci. 2015, 8, 1200–1219. [Google Scholar] [CrossRef]
- Zhao, J.; Green, M.A. Optimized antireflection coatings for high-efficiency silicon solar cells. IEEE Trans. Electron. Devices 1991, 38, 1925–1934. [Google Scholar] [CrossRef]
- Campbell, P.; Green, M.A. High performance light trapping textures for monocrystalline silicon solar cells. Sol. Energy Mater. Sol. Cells 2001, 65, 369–375. [Google Scholar] [CrossRef]
- Simeon, C.B.F.; Keith, R.M. Reflection of normally incident light from silicon solar cells with pyramidal texture. Prog. Photovolt. Res. Appl. 2011, 19, 406–416. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, T.; Dong, G.; Zhang, X.; Wang, B.; Liao, Y.; Yi, F. Fabrication and antireflection properties of solar cells with pyramid–nanohole texture by caesium chloride lithography. J. Phys. D: Appl. Phys. 2013, 46, 375302. [Google Scholar] [CrossRef]
- Atwater, H.A.; Polman, A. Plasmonics for improved photovoltaic devices. Nat. Mater. 2010, 9, 205–213. [Google Scholar] [CrossRef] [PubMed]
- Manai, L.; Rezgui, B.D.; Zaghouani, R.B.; Barakel, D.; Torchio, P.; Palais, O.; Bessais, B. Tuning of light trapping and surface plasmon resonance in silver nanoparticles/c-Si structures for solar cells. Plasmonics 2016, 11, 1273–1277. [Google Scholar] [CrossRef]
- Wu, J.L.; Chen, F.C.; Hsiao, Y.S.; Chien, F.C.; Chen, P.; Kuo, C.H.; Huang, M.H.; Hsu, C.S. Surface plasmonic effects of metallic nanoparticles on the performance of polymer bulk heterojunction solar cells. ACS Nano 2011, 5, 959–967. [Google Scholar] [CrossRef] [PubMed]
- Sandu, T. Shape effects on localized surface plasmon resonances in metallic nanoparticles. J. Nanopart. Res. 2012, 14, 1–10. [Google Scholar] [CrossRef]
- Jana, J.; Ganguly, M.; Pal, T. Enlightening surface plasmon resonance effect of metal nanoparticles for practical spectroscopic application. RSC Adv. 2016, 6, 86174–86211. [Google Scholar] [CrossRef]
- Thouti, E.; Sharma, A.K.; Komarala, V.K. Role of textured silicon surface in plasmonic light trapping for solar cells: The effect of pyramids width and height. IEEE J. Photovolt. 2016, 6, 1403–1406. [Google Scholar] [CrossRef]
- Sardana, S.K.; Venkata, S.N.C.; Thouti, E.; Chander, N.; Kumar, S.; Reddy, S.R.; Komarala, V.K. Influence of surface plasmon resonances of silver nanoparticles on optical and electrical properties of textured silicon solar cell. Appl. Phys. Lett. 2014, 104, 073903. [Google Scholar] [CrossRef]
- Notarianni, M.; Vernon, K.; Chou, A.; Aljada, M.; Liu, J.; Motta, N. Plasmonic effect of gold nanoparticles in organic solar cells. Sol. Energy 2014, 106, 23–37. [Google Scholar] [CrossRef]
- Leem, J.W.; Kim, S.; Park, C.; Kim, E.; Yu, J.S. Strong photocurrent enhancements in plasmonic organic photovoltaics by biomimetic nanoarchitectures with efficient light harvesting. ACS Appl. Mater. Interfaces 2015, 7, 6706–6715. [Google Scholar] [CrossRef] [PubMed]
- Dissanayake, M.A.K.L.; Kumari, J.M.K.W.; Senadeera, G.K.R.; Thotawatthage, C.A. Efficiency enhancement in plasmonic dye-sensitized solar cells with TiO2 photoanodes incorporating gold and silver nanoparticles. J. Appl. Electrochem. 2016, 46, 47–58. [Google Scholar] [CrossRef]
- Pahud, C.; Isabella, O.; Naqavi, A.; Haug, F.; Zeman, M.; Herzig, H.P.; Ballif, C. Plasmonic silicon solar cells: Impact of material quality and geometry. Opt. Express 2013, 21, A786–A797. [Google Scholar] [CrossRef] [PubMed]
- Xu, Q.; Johnson, C.; Disney, C.; Pillai, S. Enhanced broadband light trapping in c-Si solar cells using nanosphere-embedded metallic grating structure. IEEE J. Photovolt. 2016, 6, 61–67. [Google Scholar] [CrossRef]
- Ho, W.J.; Su, S.Y.; Lee, Y.Y.; Syu, H.J.; Lin, C.F. Performance-enhanced textured silicon solar cells based on plasmonic light scattering using silver and indium nanoparticles. Materials 2015, 8, 6668–6676. [Google Scholar] [CrossRef]
- George, A.; Choudhary, H.K.; Satpati, B.; Mandal, S. Synthesis, characterization and optical properties of ligand-protected indium nanoparticles. Phys. Chem. Chem. Phys. 2015, 17, 7109–7113. [Google Scholar] [CrossRef] [PubMed]
- Kumamoto, Y.; Taguchi, A.; Honda, M.; Watanabe, K.; Saito, Y.; Kawata, S. Indium for deep-ultraviolet surface-enhanced resonance Raman scattering. ACS Photonics 2014, 1, 598–603. [Google Scholar] [CrossRef]
- Chen, X.; Jia, B.; Zhang, Y.; Gu, M. Exceeding the limit of plasmonic light trapping in textured screen-printed solar cells using Al nanoparticles and wrinkle-like graphene sheets. Light Sci. Appl. 2013, 2, 1–6. [Google Scholar] [CrossRef]
- Ganapati, V.; Miller, O.D.; Yablonovitch, E. Light trapping textures d subwavelength thick solar cells. IEEE J. Photovolt. 2014, 4, 175–182. [Google Scholar] [CrossRef]
- Ferry, V.E.; Polman, A.; Atwate, H.A. Modeling light trapping in nanostructured solar cells. ACS Nano 2011, 5, 10055–10064. [Google Scholar] [CrossRef] [PubMed]
Jsc (mA/cm2) | Voc (mV) | η (%) | △Jsc | △η | |
---|---|---|---|---|---|
Ref. Solar Cell | 39.24 | 596.74 | 16.30 | -- | -- |
SC with In 3.8 nm | 39.41 | 600.89 | 16.63 | 0.43% | 2.02% |
SC with In 5.0 nm | 39.44 | 600.06 | 16.71 | 0.51% | 2.51% |
SC with In 6.0 nm | 39.48 | 600.57 | 16.76 | 0.61% | 2.81% |
0° | 15° | 30° | 45° | 60° | 75° | |
---|---|---|---|---|---|---|
EQEW (%) | 88.52 | 88.1 | 86.98 | 85.18 | 83.01 | 78.19 |
EQEW-In NPs (%) | 88.85 | 88.58 | 87.85 | 86.56 | 84.92 | 80.92 |
△EQEW (%) | 0.37 | 0.54 | 0.99 | 1.61 | 2.29 | 3.48 |
Reference Solar Cell | The Cell with In NPs | |||||
---|---|---|---|---|---|---|
Angle | Jsc (mA/cm2) | Voc (mV) | η (%) | Jsc (mA/cm2) | Voc (mV) | η (%) |
0° | 39.81 | 606.73 | 16.41 | 40.01 | 606.98 | 16.51 |
15° | 37.36 | 602.8 | 15.3 | 37.64 | 606.35 | 15.64 |
30° | 32.98 | 599.02 | 13.39 | 33.3 | 599.44 | 13.61 |
45° | 26.37 | 588.01 | 10.44 | 26.7 | 592.33 | 10.72 |
60° | 17.9 | 571.96 | 6.8 | 18.35 | 574.37 | 7.01 |
75° | 8.75 | 535.66 | 3.02 | 9.15 | 540.31 | 3.21 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ho, W.-J.; Lin, J.-C.; Liu, J.-J.; Yeh, C.-W.; Syu, H.-J.; Lin, C.-F. Plasmonic Light Scattering in Textured Silicon Solar Cells with Indium Nanoparticles from Normal to Non-Normal Light Incidence. Materials 2017, 10, 737. https://doi.org/10.3390/ma10070737
Ho W-J, Lin J-C, Liu J-J, Yeh C-W, Syu H-J, Lin C-F. Plasmonic Light Scattering in Textured Silicon Solar Cells with Indium Nanoparticles from Normal to Non-Normal Light Incidence. Materials. 2017; 10(7):737. https://doi.org/10.3390/ma10070737
Chicago/Turabian StyleHo, Wen-Jeng, Jian-Cheng Lin, Jheng-Jie Liu, Chien-Wu Yeh, Hong-Jhang Syu, and Ching-Fuh Lin. 2017. "Plasmonic Light Scattering in Textured Silicon Solar Cells with Indium Nanoparticles from Normal to Non-Normal Light Incidence" Materials 10, no. 7: 737. https://doi.org/10.3390/ma10070737
APA StyleHo, W. -J., Lin, J. -C., Liu, J. -J., Yeh, C. -W., Syu, H. -J., & Lin, C. -F. (2017). Plasmonic Light Scattering in Textured Silicon Solar Cells with Indium Nanoparticles from Normal to Non-Normal Light Incidence. Materials, 10(7), 737. https://doi.org/10.3390/ma10070737