Mechanical Performance of Asphalt Mortar Containing Hydrated Lime and EAFSS at Low and High Temperatures
Abstract
:1. Introduction
2. Literature Review
3. Objective and Research Approach
4. Materials Testing
4.1. Materials Preparation
4.2. Low-Temperature Testing and Parameters Computation
4.3. High-Temperature Testing
5. Statistical Analysis: Methodology
6. Low-Temperature Results and Modeling
6.1. Experimental Results and Statistical Analysis
6.2. Huet Model and Analysis
7. High-Temperature Results and Analysis
8. Summary and Conclusions
- The low-temperature properties of mortars prepared with softer asphalt binder (PG 64-34 binder) are not significantly affected when using hydrated lime or EAFSS up to 10%. When a stiffer binder is used in the mix design, the EAFSS content has to be limited to 5%, suggesting a consistent stiffening effect for this type of filler.
- Higher material characteristic time was obtained from the Huet model for materials contenting higher amount of filler, suggesting a progressive loss in relaxation capabilities.
- At high temperature, the inclusion of hydrated lime and EAFSS results into a consistent improvement of the performance against rutting. This is shown by the increasing linear trend of the conventional PG rutting parameter for increased particles contents.
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Moon, K.H.; Marasteanu, M.O.; Turos, M. Comparison of thermal stresses calculated from asphalt binder and asphalt mixture creep tests. J. Mater. Civ. Eng. 2012, 25, 1059–1067. [Google Scholar] [CrossRef]
- Cannone Falchetto, A.; Moon, K.H. Comparison of analytical and approximate inter-conversion methods for thermal stress computation. Can. J. Civ. Eng. 2015, 42, 705–719. [Google Scholar] [CrossRef]
- Marasteanu, M.O.; Buttlar, W.; Bahia, H.; Williams, C.; Moon, K.H.; Teshale, E.Z.; Falchetto, A.C.; Turos, M.; Dave, E.; Paulino, G.; et al. Investigation of Low Temperature Cracking in Asphalt Pavements. National Pooled Fund Study Phase II; Research Report 2007-43; Minnesota Department of Transportation (MN/DOT): Saint Paul, MN, USA, 2012. [Google Scholar]
- AASHTO M320: Standard Specification for Performance-Graded Asphalt Binder; American Association of State Highway and Transportation Officials: Washington, DC, USA, 2016.
- Anderson, D.A.; Bahia, H.U.; Dongre, R. Rheological Properties of Mineral Filler-Asphalt Mastics and Its Importance to Pavement Performance; In STP-1147; ASTM: Washington, DC, USA, 1992; pp. 131–153. [Google Scholar]
- Little, D.N.; Petersen, J.C. Unique effects of hydrated lime filler on the performance-related properties of asphalt cements: Physical and chemical interactions revisited. J. Mater. Civ. Eng. 2005, 17, 207–218. [Google Scholar] [CrossRef]
- Delaporte, B.; Di Benedetto, H.; Chaverot, P.; Gauthier, G. Effect of ultrafine particles on linear viscoelastic properties of mastics and asphalt concretes. Trans. Res. Rec. 2008, 2051, 41–48. [Google Scholar] [CrossRef]
- Wu, K.; Zhu, K.; Kang, C.; Wu, B.; Huang, Z. An experimental investigation of flame retardant mechanism of hydrated lime in asphalt mastics. Mater. Des. 2016, 103, 223–229. [Google Scholar] [CrossRef]
- Zhang, Z.Q.; Wang, Y.C. Influence of asphalt mortar on hot mix asphalt performance at high and low Temperature. J. Chang’an Univ. Nat. Sci. Ed. 2006, 26, 1–5. (In Chinese) [Google Scholar]
- Liao, M.C.; Airey, G.; Chen, J.S. Mechanical properties of filler asphalt mastic. Int. J. Pavement Res. Technol. 2013, 6, 576–581. [Google Scholar] [CrossRef]
- Riccardi, C.; Cannone Falchetto, A.; Losa, M.; Wistuba, M.P. Rheological modeling of asphalt binder and asphalt mortar containing recycled asphalt material. Mater. Struct. 2016, 49, 4167–4183. [Google Scholar] [CrossRef]
- Riccardi, C.; Cannone Falchetto, A.; Losa, M.; Wistuba, M.P. Back-calculation method for determining the maximum rap content in stone matrix asphalt mixtures with good fatigue performance based on asphalt mortar tests. Constr. Build. Mater. 2016, 118, 364–372. [Google Scholar] [CrossRef]
- Buttlar, W.G.; Bozkurt, D.; Al-Khateeb, G.G.; Waldhoff, A.S. Understanding asphalt mastic behavior through micromechanics. Trans. Res. Rec. 1999, 1681, 157–169. [Google Scholar] [CrossRef]
- Delaporte, B.; Di Benedetto, H.; Chaverot, P.; Gauthier, G. Linear viscoelastic properties of bituminous materials: From binder to mastics. J. Assoc. Asph. Paving 2007, 76, 445–494. [Google Scholar]
- Phan, C.V.; Di Benedetto, H.; Sauzéat, C.; Lesueur, D. Influence of hydrated lime on linear viscoelastic properties of bituminous mixtures. In Proceedings of the 8th RILEM International Symposium on Testing and Characterization of Sustainable and Innovative Bituminous Materials, Nantes, France, 7–9 June 2016; pp. 667–680. [Google Scholar]
- Zou, J.; Roque, R.; Lopp, G.; Isola, M.; Bekoe, M. Impact of hydrated lime on cracking performance of asphalt mixtures with oxidation and cyclic pore pressure. Transp. Res. Rec. 2016, 2576, 51–59. [Google Scholar] [CrossRef]
- Kakade, V.B.; Reddy, M.A.; Reddy, K.S. Effect of aging on fatigue performance of hydrated lime modified bituminous mixes. Constr. Build. Mater. 2016, 113, 1034–1043. [Google Scholar] [CrossRef]
- Ellis, C.; Widyatmoko, I. Performance and durability aspects of asphalts incorporating electric arc furnace steel slag aggregates designed for use in thin pavement surfaces. In Proceedings of the 3rd European Symposium on Performance and Durability of Bituminous Materials and Hydraulic Stabilized Composites, Leeds, UK, April 1999; pp. 221–238. [Google Scholar]
- Morone, M.; Costa, G.; Polettini, A.; Pomi, R.; Baciocchi, R. Valorization of steel slag by a combined carbonation and granulation treatment. Miner. Eng. 2014, 59, 82–90. [Google Scholar] [CrossRef]
- Suer, P.; Lindqvist, J.E.; Arm, M.; Frogner-Kockum, P. Reproducing ten years of road ageing-accelerated carbonation and leaching of EAF steel slag. Sci. Total Environ. 2009, 407, 5110–5118. [Google Scholar] [CrossRef] [PubMed]
- Sofilic, T.; Maldenovic, A.; Sofilic, U. Characterization of the EAF steel slag as aggregate for use in road construction. In Proceedings of the 4th International Conference on Safety & Environment in Process Industry, Florence, Italy, 14 March 2010; pp. 117–123. [Google Scholar]
- Wu, S.; Xue, Y.; Ye, Q.; Chen, Y. Utilization of steel slag as aggregates for stone mastic asphalt (SMA) mixtures. Build. Environ. 2007, 42, 2580–2585. [Google Scholar] [CrossRef]
- Sorlini, S.; Sanzeni, A.; Rondi, L. Reuse of steel slag in bituminous paving mixtures. J. Hazard. Mater. 2012, 209, 84–91. [Google Scholar] [CrossRef] [PubMed]
- Washington State DOT. WSDOT Strategies Regarding Use of Steel Slag Aggregate in Pavements; A Report to the State Legislature in Response to 2ESHB 1299; Washington State DOT: Olympia, WA, USA, 2015. [Google Scholar]
- Liapis, I.; Likoydis, S. Use of electric arc furnace slag in thins skid-resistant surfacing. Procedia Soc. Behav. Sci. 2012, 48, 907–918. [Google Scholar] [CrossRef]
- Ameri, M.; Hesami, S.; Goli, H. Laboratory evaluation of warm mix asphalt mixtures containing Electric Arc Furnace (EAF) steel slag. Constr. Build. Mater. 2013, 49, 611–617. [Google Scholar] [CrossRef]
- Rockliff, D.; Moffett, A.; Thomas, N. Recent developments in the use of steel slag aggregates in asphalt mixtures in the UK. In Proceedings of the 4th European Symposium on Performance of Bituminous and Hydraulic Materials in Pavements, Nottingham, UK, 11–12 April 2002. [Google Scholar]
- Grönniger, J.; Wistuba, M.P.; Cannone Falchetto, A. Reuse of Linz-Donawitz (LD) slag in asphalt mixtures for pavement application. In Proceedings of the International Conference on Industrial Wasted and Wastewater Treatment & Valorization, Athens, Greece, 21–23 May 2015. [Google Scholar]
- AASHTO T313: Standard Method of Test for Determining the Flexural Creep Stiffness of Asphalt Binder Using the Bending Beam Rheometer (BBR); American Association of State Highway and Transportation Officials: Washington, DC, USA, 2012.
- AASHTO T315: Standard Method of Test for Determining the Rheological Properties of Asphalt Binder Using a Dynamic Shear Rheometer (DSR); American Association of State Highway and Transportation Officials: Washington, DC, USA, 2012.
- Cook, D.R.; Weisberg, S. Applied Regression Including Computing and Graphics; John Wiley & Sons, Inc.: New York, NY, USA, 1999. [Google Scholar]
- Hopkins, I.L.; Hamming, R.W. On creep and relaxation. J. Appl. Phys. 1957, 28, 906–909. [Google Scholar] [CrossRef]
- Park, S.W.; Kim, Y.R. Interconversion between relaxation modulus and creep compliance for viscoelastic solids. J. Mater. Civ. Eng. 1999, 11, 76–82. [Google Scholar] [CrossRef]
- Huet, C. Etude par une Méthode d’Impédance du Comportement Viscoélastique des Matériaux Hydrocarbonés. Thèse de Doctorat d’Ingénieur, Faculté des Sciences de l’Université de Paris, Paris, France, 18 October 1963. (In French). [Google Scholar]
- Marasteanu, M.O.; Anderson, D.A. Improved model for bitumen rheological characterization. In Proceedings of the European Workshop on Performance-Related Properties for Bituminous Binders, Brussels, Belgium, 3–6 May 1999. [Google Scholar]
- Pellinen, T. The Assessment of Validity of Using Different Shifting Equations to Construct a Master Curve of HMA; University of Maryland: College Park, MD, USA, 1998. [Google Scholar]
- Pellinen, T.K.; Witczak, M.W. Stress dependent master curve construction for dynamic (complex) modulus. J. Assoc. Asph. Paving 2002, 71, 281–309. [Google Scholar]
- TL Asphalt-StB 07/13. Technische Lieferbedingungen für Asphaltmischgut für den Bau von Verkehrsflächenbefestigungen; Forschungsgesellschaft für Straßen- und Verkehrswesen: Köln, Germany, 2015. (In German) [Google Scholar]
- Maharaj, D.; Mwasha, A. Assessment of the use of Arcelor Mittal elelctric arc furnace slag as coarse aggregates in concrete production. In Proceedings of the 4th International Conference on Concrete Repair, Leipzig, Germany, 5–8 October 2015; pp. 389–393. [Google Scholar]
- AASHTO T240: Standard Method of Test for Effect of Heat and Air on a Moving Film of Asphalt (Rolling Thin-Film Oven Test); American Association of State Highway and Transportation Officials: Washington, DC, USA, 2013.
- AASHTO R028: Standard Practice for Accelerated Aging of Asphalt Binder Using a Pressurized Aging Vessel (PAV); American Association of State Highway and Transportation Officials: Washington, DC, USA, 2012.
- Findley, W.N.; Lai, J.S.; Onaran, K. Creep and Relaxation of Nonlinear Viscoelastic Materials; Dover Publications: New York, NY, USA, 1976. [Google Scholar]
- Shenoy, A. Single-event cracking temperature of asphalt pavements directly from bending beam rheometer data. J. Transp. Eng. 2002, 128, 465–471. [Google Scholar] [CrossRef]
- AASHTO M332-14: Standard Specification for Performance-Graded Asphalt Binder Using Multiple Stress Creep Recovery (MSCR) Test; American Association of State Highway and Transportation Officials: Washington, DC, USA, 2014.
- Cannone Falchetto, A.; Marasteanu, M.O.; Di Benedetto, H. Analogical based approach to forward and inverse problems for asphalt materials characterization at low temperatures. J. Assoc. Asph. Paving 2011, 80, 549–581. [Google Scholar]
- Cannone Falchetto, A.; Moon, K.H. Micromechanical–analogical modelling of asphalt binder and asphalt mixture creep stiffness properties at low temperature. Road Mater. Pavement 2015, 16, 111–137. [Google Scholar] [CrossRef]
- Cannone Falchetto, A.; Moon, K.H.; Wistuba, M.P. Investigation on the development of asphalt mixture limit criteria for low-temperature cracking. Transp. Res. Rec. 2016, 2574, 83–91. [Google Scholar] [CrossRef]
Binder Type | PG | Filler Type | Filler Content | Material | Reference |
---|---|---|---|---|---|
Plain | PG 58-28 | Hydrated lime (r = 2.3 g/cm3) | 0% | Binder | Control |
5% | Mortar | - | |||
10% | Mortar | - | |||
20% | Mortar | - | |||
EAFSS (r = 3.39 g/cm3) | 0% | Binder | Control | ||
5% | Mortar | - | |||
10% | Mortar | - | |||
20% | Mortar | - | |||
Modified | PG 64-34 | Hydrated lime (r = 2.3 g/cm3) | 0% | Binder | Control |
5% | Mortar | - | |||
10% | Mortar | - | |||
20% | Mortar | - | |||
EAFSS (r = 3.39 g/cm3) | 0% | Binder | Control | ||
5% | Mortar | - | |||
10% | Mortar | - | |||
20% | Mortar | - |
Variables | Particle Content | 1 H&H Algorithm [41] | 2 P&K algorithm [42] | ||||||
---|---|---|---|---|---|---|---|---|---|
PG 58-28 | PG 64-34 | PG 58-28 | PG 64-34 | ||||||
3 H.Lime | EAFSS | H.Lime | EAFSS | H.Lime | EAFSS | H.Lime | EAFSS | ||
TCR (°C) | 0% | −28.8 | −32.9 | −28.3 | −32.2 | ||||
5% | −28.7 | −28.4 | −32.5 | −32.5 | −28.2 | −28.2 | −31.9 | −32.0 | |
10% | −28.3 | −27.6 | −32.2 | −32.4 | −28.1 | −27.5 | −31.8 | −31.8 | |
20% | −26.9 | −26.7 | −31.8 | −31.3 | −26.7 | −26.5 | −31.6 | −30.8 | |
p-value | 0 vs. 5% | 0.869 | 0.067 | 0.059 | 0.051 | 0.760 | 0.588 | 0.318 | 0.502 |
0 vs. 10% | 0.068 | 0.003 | 0.076 | 0.052 | 0.426 | 0.018 | 0.291 | 0.077 | |
0 vs. 20% | 0.008 | 0.001 | 0.021 | 0.001 | 0.014 | 0.005 | 0.046 | 0.012 |
Parameter | PG 58-28 | PG 64-34 | |||
---|---|---|---|---|---|
H.Lime | EAFSS | H.Lime | EAFSS | ||
k | Level 0% | 0.101 | 0.143 | ||
Level 5% | 0.097 | 0.093 | 0.132 | 0.128 | |
Level 10% | 0.093 | 0.089 | 0.127 | 0.126 | |
Level 20% | 0.087 | 0.079 | 0.116 | 0.101 | |
p-value | 0% vs. 5% | 0.306 | 0.064 | 0.160 | 0.068 |
0% vs. 10% | 0.098 | 0.044 | 0.055 | 0.051 | |
0% vs. 20% | 0.011 | 0.002 | 0.009 | 0.005 |
Parameter | PG 58-28 | PG 64-34 | |||
---|---|---|---|---|---|
H.Lime | EAFSS | H.Lime | EAFSS | ||
h | Level 0% | 0.533 | 0.646 | ||
Level 5% | 0.523 | 0.499 | 0.623 | 0.615 | |
Level 10% | 0.504 | 0.484 | 0.615 | 0.594 | |
Level 20% | 0.467 | 0.453 | 0.572 | 0.555 | |
p-value | 0% vs. 5% | 0.509 | 0.073 | 0.125 | 0.055 |
0% vs. 10% | 0.091 | 0.029 | 0.052 | 0.005 | |
0% vs. 20% | 0.014 | 0.009 | 0.004 | 0.002 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moon, K.H.; Falchetto, A.C.; Wang, D.; Riccardi, C.; Wistuba, M.P. Mechanical Performance of Asphalt Mortar Containing Hydrated Lime and EAFSS at Low and High Temperatures. Materials 2017, 10, 743. https://doi.org/10.3390/ma10070743
Moon KH, Falchetto AC, Wang D, Riccardi C, Wistuba MP. Mechanical Performance of Asphalt Mortar Containing Hydrated Lime and EAFSS at Low and High Temperatures. Materials. 2017; 10(7):743. https://doi.org/10.3390/ma10070743
Chicago/Turabian StyleMoon, Ki Hoon, Augusto Cannone Falchetto, Di Wang, Chiara Riccardi, and Michael P. Wistuba. 2017. "Mechanical Performance of Asphalt Mortar Containing Hydrated Lime and EAFSS at Low and High Temperatures" Materials 10, no. 7: 743. https://doi.org/10.3390/ma10070743
APA StyleMoon, K. H., Falchetto, A. C., Wang, D., Riccardi, C., & Wistuba, M. P. (2017). Mechanical Performance of Asphalt Mortar Containing Hydrated Lime and EAFSS at Low and High Temperatures. Materials, 10(7), 743. https://doi.org/10.3390/ma10070743