Raman and Photoemission Spectroscopic Analyses of Explanted Biolox® Delta Femoral Heads Showing Metal Transfer
Abstract
:1. Introduction
- through intraoperative reduction of total hip arthroplasty (THA) if the ceramic head comes into contact with the acetabular rim [21];
- during primary THA if there are any intraoperative difficulties in reduction or if multiple dislocation/relocation manoeuvres are necessary during surgery [19];
- after surgery [15].
2. Materials and Methods
2.1. Materials
2.2. Micro-Raman and Photoemission Spectroscopy
2.3. Statistical Analysis
3. Results
3.1. Photoemission Spectroscopy
3.2. Micro-Raman Spectroscopy
4. Discussion
5. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Burger, W.; Richter, H.G. High strength and toughness alumina matrix composites by transformation toughening and “in situ” platelet reinforcement (ZPTA)—The new generation of bioceramics. Key Eng. Mater. 2001, 192–195, 545–548. [Google Scholar] [CrossRef]
- Bradt, R.C. Cr2O3 Solid Solution Hardening of Al2O3. J. Am. Ceram. Soc. 1967, 5, 54–55. [Google Scholar] [CrossRef]
- Magnani, G.; Brillante, A. Effect of the composition and sintering process on mechanical properties and residual stresses in zirconia alumina composites. J. Eur. Ceram. Soc. 2005, 25, 3383–3392. [Google Scholar] [CrossRef]
- Willmann, G. Ceramics for total hip replacement—What a surgeon should know. Orthopedics 1998, 21, 173–180. [Google Scholar] [PubMed]
- Willmann, G. The evolution of ceramics in total hip arthroplasty. Hip Int. 2000, 10, 193–203. [Google Scholar]
- Ma, L.; Rainforth, W.M. A study of Biolox® delta subject to water lubricated reciprocating wear. Tribol. Int. 2010, 43, 1872–1881. [Google Scholar] [CrossRef]
- Chevalier, J.; Cales, B.; Drouin, J.M. Low-temperature aging of Y-TZP ceramics. J. Am. Ceram. Soc. 1999, 82, 2150–2154. [Google Scholar] [CrossRef]
- Chevalier, J. What future for zirconia as a biomaterial? Biomaterials 2006, 27, 535–543. [Google Scholar] [CrossRef] [PubMed]
- Chevalier, J.; Gremillard, L.; Deville, S. Low-temperature degradation of zirconia and implications for biomedical implants. Annu. Rev. Mater. Res. 2007, 37, 1–32. [Google Scholar] [CrossRef]
- Deville, S.; Chevalier, J.; Dauvergne, C.H.; Fantozzi, G.; Bartolomé, J.F.; Moya, S.; Torrecillas, R. Microstructural investigation of the aging behavior of (3Y-TZP)–Al2O3 composites. J. Am. Ceram. Soc. 2005, 88, 1273–1280. [Google Scholar] [CrossRef]
- Elpers, M.; Nam, D.; Boydston-White, S.; Ast, M.P.; Wright, T.M.; Padgett, D.E. Zirconia phase transformation, metal transfer, and surface roughness in retrieved ceramic composite femoral heads in total hip arthroplasty. J. Arthroplasty 2014, 29, 2219–2223. [Google Scholar] [CrossRef] [PubMed]
- Lombardi, A.V.; Berend, K.R.; Seng, B.E.; Clarke, I.C.; Adams, J.B. Delta ceramic-on-alumina ceramic articulation in primary THA: Prospective, randomized FDA-IDE study and retrieval analysis. Clin. Orthop. Relat. Res. 2010, 468, 367–374. [Google Scholar] [CrossRef] [PubMed]
- Taddei, P.; Modena, E.; Traina, F.; Affatato, S. Raman and fluorescence investigations on retrieved Biolox® delta femoral heads. J. Raman Spectrosc. 2012, 43, 1868–1876. [Google Scholar] [CrossRef]
- Affatato, S.; Modena, E.; Toni, A.; Taddei, P. Retrieval analysis of three generations of Biolox® femoral heads: Spectroscopic and SEM characterization. J. Mech. Behav. Biomed. 2012, 13, 118–128. [Google Scholar] [CrossRef] [PubMed]
- Affatato, S.; Ruggiero, A.; De Mattia, J.S.; Taddei, P. Does metal transfer affect the tribological behaviour of femoral heads? Roughness and phase transformation analyses on retrieved zirconia and Biolox® delta composites. Compos. Part B-Eng. 2016, 92, 290–298. [Google Scholar] [CrossRef]
- Taddei, P.; Ruggiero, A.; Pavoni, E.; Affatato, S. Transfer of metallic debris after in vitro ceramic-on-metal simulation: Wear and degradation in Biolox® delta composite femoral heads. Compos. Part B-Eng. 2017, 115, 477–487. [Google Scholar] [CrossRef]
- Chong, B.C.; Jeong, J.Y.; Won, S.S.; Deug, J.K.; Koo, K.H.; Kim, H.J. Transfer of metallic debris from the metal surface of an acetabular cup to artificial femoral heads by scraping: Comparison between alumina and cobalt-chrome heads. J. Biomed. Mater. Res. B 2008, 85, 204–209. [Google Scholar] [CrossRef] [PubMed]
- Brandt, J.M.; Gascoyne, T.C.; Guenther, L.E.; Allen, A.; Hedden, D.R.; Turgeon, T.R.; Bohm, E.R. Clinical failure analysis of contemporary ceramic-on-ceramic total hip replacements. Proc. Inst. Mech. Eng. Part H J. Eng. Med. 2013, 227, 833–846. [Google Scholar] [CrossRef] [PubMed]
- Müller, F.; Hagymási, M.; Greil, P.; Zeiler, G.; Schuh, A. Transfer of metallic debris after dislocation of ceramic femoral heads in hip prostheses. Arch. Orthop. Trauma Surg. 2006, 126, 174–180. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.H.; Ritchie, A.; Hardaker, C. Surface roughness of ceramic femoral heads after in vivo transfer of metal: Correlation to polyethylene wear. J. Bone Jt. Surg. Am. 2005, 87, 577–582. [Google Scholar] [CrossRef]
- Bal, B.S.; Rahaman, M.N.; Aleto, T.; Miller, F.S.; Traina, F.; Toni, A. The significance of metal staining on alumina femoral heads in total hip arthroplasty. J. Arthroplasty 2007, 22, 14–23. [Google Scholar] [CrossRef] [PubMed]
- Katagiri, G.; Ishida, H.; Ishitani, A.; Masaki, T. Science and Technology of Zirconia; American Ceramic Society: Westerville, OH, USA, 1988; pp. 537–544. [Google Scholar]
- Pezzotti, G.; Yamada, K.; Sakakura, S.; Pitto, R.P. Raman spectroscopic analysis of advanced ceramic composite for hip prosthesis. J. Am. Ceram. Soc. 2008, 91, 1199–1206. [Google Scholar] [CrossRef]
- Clarke, D.R.; Adar, F. Measurement of the crystallographically transformed zone produced by fracture in ceramics containing tetragonal zirconia. J. Am. Ceram. Soc. 1982, 65, 284–288. [Google Scholar] [CrossRef]
- Garcia, M.A.; Paje, S.E.; Llopis, J. Relationship between mechanical grinding and photoluminescence of zirconia-toughened-alumina ceramics. Mater. Sci. Eng. 2002, 325, 302–306. [Google Scholar] [CrossRef]
- Ma, Q.; Clarke, D.R. Piezospectroscopic determination of residual stresses in polycrystalline alumina. J. Am. Ceram. Soc. 1994, 77, 298–302. [Google Scholar] [CrossRef]
- He, J.; Clarke, D.R. Determination of the piezospectroscopic coefficients for chromium-doped sapphire. J. Am. Ceram. Soc. 1995, 78, 1347–1353. [Google Scholar] [CrossRef]
- Krishnan, R.; Kesavamoorthy, R.; Dash, S.; Tyagi, A.K.; Raj, B. Raman spectroscopic and photoluminescence investigations on laser surface modified α-Al2O3 coatings. Scr. Mater. 2003, 48, 1099–1104. [Google Scholar] [CrossRef]
- Sergo, V.; Pezzotti, G.; Sbaizero, O.; Nishida, T. Grain size influence on residual stresses in alumina/zirconia composites. Acta Mater. 1998, 46, 1701–1710. [Google Scholar] [CrossRef]
- Grabner, L. Spectroscopic techniques for the measurement of residual stress in sintered Al2O3. J. Appl. Phys. 1978, 49, 580–583. [Google Scholar] [CrossRef]
- Affatato, S.; Ruggiero, A.; Merola, M.; Logozzo, S. Does metal transfer differ on retrieved Biolox® Delta composites femoral heads? Surface investigation on three Biolox® generations from a biotribological point of view. Compos. Part B-Eng. 2017, 113, 164–173. [Google Scholar] [CrossRef]
- Fagnano, C.; Rossi, M.; Porter, R.S.; Ottani, S. A study on solid-state drawn fibers of polyethylene by confocal Raman microspectrometry: Evaluation of the orientation profiles of amorphous and crystalline phases across the fiber section. Polymer 2001, 42, 5871–5883. [Google Scholar] [CrossRef]
- Mc Lure, D.S. Optical Spectra of transition metal ions in corundum. J. Phys. Chem. 1962, 36, 2757–2779. [Google Scholar] [CrossRef]
- Maiman, T.H. Stimulated optical radiation in ruby. Nature 1960, 187, 493–494. [Google Scholar] [CrossRef]
- Philippi, C.M.; Mazdiyasni, K.S. Infrared and Raman spectra of zirconia polymorphs. J. Am. Ceram. Soc. 1971, 54, 254–258. [Google Scholar] [CrossRef]
- Ishigame, M.; Sakurai, T. Temperature dependence of the Raman spectra of ZrO2. J. Am. Ceram. Soc. 1977, 60, 367–369. [Google Scholar] [CrossRef]
- Porto, S.P.S.; Krishnan, R.S. Raman effect of corundum. J. Chem. Phys. 1967, 47, 1009–1012. [Google Scholar] [CrossRef]
- Pezzotti, G.; Affatato, S.; Rondinella, A.; Yorifuji, M.; Marin, E.; Zhu, W.; McEntire, B.; Bal, S.B.; Yamamoto, K. In Vitro versus In Vivo Phase Instability of Zirconia-Toughened Alumina Femoral Heads: A Critical Comparative Assessment. Materials 2017, 10, 466. [Google Scholar] [CrossRef]
- Insley, G.M.; Streicher, R.M. Next generation ceramic based on zirconia toughened alumina for hip joint prostheses. Key Eng. Mater. 2004, 254, 675–678. [Google Scholar] [CrossRef]
- Chevalier, J.; Grandjean, S.; Kuntz, M.; Pezzotti, M. On the kinetics and impact of tetragonal to monoclinic transformation in an alumina/zirconia composite for arthroplasty applications. Biomaterials 2009, 30, 5279–5282. [Google Scholar] [CrossRef] [PubMed]
- Bal, B.S.; Zhu, W.; Zanocco, M.; Marin, E.; Sugano, N.; McEntire, B.J.; Pezzotti, G. Reconciling in vivo and in vitro kinetics of the polymorphic transformation in zirconia-toughened alumina for hip joints: I. Phenomenology. J. Mater. Sci. Eng. C 2017, 72, 252–258. [Google Scholar] [CrossRef] [PubMed]
- Taddei, P.; Affatato, S.; Fagnano, C.; Toni, A. Photoluminescence investigations on alumina ceramic bearing couples tested under different angles of inclination in a hip joint simulator. J. Mater. Sci. 2006, 41, 399–407. [Google Scholar] [CrossRef]
- Taddei, P.; Affatato, S.; Torrecillas, R.; Fagnano, C.; Ferrieri, P.; Toni, A. Wear behaviour, fluorescence and SEM investigations on nanocomposite zirconia-toughened alumina. J. Mater. Sci. 2006, 41, 5310–5316. [Google Scholar] [CrossRef]
- Chevalier, J.; Taddei, P.; Gremillard, L.; Deville, S.; Fantozzi, G.; Bartolomé, J.F.; Pecharroman, C.; Moya, J.S.; Diaz, L.A.; Torrecillas, R.; et al. Reliability assessment in advanced nanocomposite materials for orthopaedic applications. J. Mech. Behav. Biomed. Mater. 2011, 4, 303–314. [Google Scholar] [CrossRef] [PubMed]
- Ma, Q.; Clarke, D.R. Stress measurements in single-crystal and polycrystalline ceramics using their optical fluorescence. J. Am. Ceram. Soc. 1993, 76, 1433–1440. [Google Scholar] [CrossRef]
- Gregori, G.; Burger, W.; Sergo, V. Piezo-spectroscopy analysis of the residual stress in zirconia-toughened alumina ceramics: The influence of the tetragonal to monoclinic transformation. Mater. Sci. Eng. 1999, A271, 401–406. [Google Scholar] [CrossRef]
- Ortiz, M.; Suresh, S. Statistical properties of residual stresses and intergranular fracture in ceramic materials. J. Appl. Mech. 1993, 60, 77–84. [Google Scholar] [CrossRef]
- Boffelli, M.; Doimo, A.; Marin, E.; Puppulin, L.; Zhu, W.; Sugano, N.; Clarke, I.C.; Pezzotti, G. Chemically driven tetragonal-to-monoclinic polymorphic transformation in retrieved ZTA femoral heads from dual mobility hip implants. J. Mech. Behav. Biomed. Mater. 2016, 56, 195–204. [Google Scholar] [CrossRef] [PubMed]
- Pezzotti, G.; Porporati, A. Raman spectroscopic analysis of phase transformation and stress patterns in zirconia hip joints. J. Biomed. Optics. 2004, 9, 372–384. [Google Scholar] [CrossRef] [PubMed]
- Parkes, M.; Sayer, K.; Goldhofer, M.; Cann, P.; Walter, W.L.; Jeffers, J. Zirconia phase transformation in retrieved, wear simulated and artificially aged ceramic femoral heads. J. Orthop. Res. 2017. [Google Scholar] [CrossRef] [PubMed]
- Zhu, W.; Pezzotti, G.; Boffelli, M.; Chotanaphuti, T.; Khuangsirikul, S.; Sugano, N. Chemistry-driven structural alterations in short-term retrieved ceramic-on-metal hip implants: Evidence for in vivo incompatibility between ceramic and metal counterparts. J. Biomed. Mater. Res. Part B Appl. Biomater. 2016. [Google Scholar] [CrossRef] [PubMed]
- Johnson, W.A.; Mehl, R.F. Reaction Kinetics in Processes of Nucleation and Growth. Trans. Am. Inst. Min. Metall. Pet. Eng. 1939, 135, 416–441. [Google Scholar]
- Christian, J.W. The Theory of Transformation in Metals and Alloys; Pergamon Press: Oxford, UK, 1965; pp. 525–548. [Google Scholar]
Head Number | Age at Surgery | Follow-Up (yr) | Gender | Implant Side | Implantation Year | Head Surface Area (mm2) | MT Area (mm2) | MT Rate % |
---|---|---|---|---|---|---|---|---|
#1 | 69 | 3.7 | M | right | 2006 | 3392.9 | 85.8 | 2.5 |
#2 | 62 | 2.4 | F | right | 2008 | 2824.9 | 95.3 | 3.4 |
#3 | 68 | 5.4 | F | right | 2008 | 3392.9 | 127.9 | 3.8 |
#4 | 56 | 0.1 | M | right | 2009 | 2804.8 | 286.1 | 10.2 |
#5 | 61 | 0.2 | F | right | 2010 | 2804.8 | 160.9 | 5.7 |
#6 | 82 | 0.1 | M | left | 2010 | 2804.8 | 71.9 | 2.6 |
#7 | 76 | 0.2 | F | left | 2010 | 2764.6 | 95.1 | 3.4 |
#8 | 77 | 0.1 | M | right | 2010 | 2804.8 | 126.5 | 4.5 |
#9 | 48 | 0.2 | M | right | 2010 | 2804.8 | 33.1 | 1.2 |
#10 | 68 | 0.5 | M | right | 2011 | 2804.8 | 33.0 | 1.2 |
#11 | 56 | 1.9 | M | left | 2011 | 3415.5 | 234.5 | 6.9 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Taddei, P.; Pavoni, E.; Affatato, S. Raman and Photoemission Spectroscopic Analyses of Explanted Biolox® Delta Femoral Heads Showing Metal Transfer. Materials 2017, 10, 744. https://doi.org/10.3390/ma10070744
Taddei P, Pavoni E, Affatato S. Raman and Photoemission Spectroscopic Analyses of Explanted Biolox® Delta Femoral Heads Showing Metal Transfer. Materials. 2017; 10(7):744. https://doi.org/10.3390/ma10070744
Chicago/Turabian StyleTaddei, Paola, Eleonora Pavoni, and Saverio Affatato. 2017. "Raman and Photoemission Spectroscopic Analyses of Explanted Biolox® Delta Femoral Heads Showing Metal Transfer" Materials 10, no. 7: 744. https://doi.org/10.3390/ma10070744
APA StyleTaddei, P., Pavoni, E., & Affatato, S. (2017). Raman and Photoemission Spectroscopic Analyses of Explanted Biolox® Delta Femoral Heads Showing Metal Transfer. Materials, 10(7), 744. https://doi.org/10.3390/ma10070744