Nanocrystalline Al7075 + 1 wt % Zr Alloy Prepared Using Mechanical Milling and Spark Plasma Sintering
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Powder Material
3.2. Compact Materials
4. Discussion
5. Conclusions
- The Al7075Zr compacts with very low porosity (below 1 vol %) were prepared from gas-atomized and milled powders by spark plasma sintering.
- The gas-atomized powder has predominantly a cellular microstructure. Cells of a size typically close to 1 µm are separated by high-angle boundaries decorated by continuous layers of intermetallic phases.
- The milled powder has a nanocrystalline microstructure, with a grain size of between 20 and 100 nm. The very small grain size simultaneously with a large strain introduced during milling results in a broadening of XRD peaks. Milling also leads to a dissolution of intermetallic phases present in the original gas-atomized powder.
- SPS does not significantly change the microstructure of the atomized powder: the grain size corresponds to the size of the cells or to the size of smaller atomized droplets with an originally segregation-free microstructure and are separated by high-angle boundaries. The continuous layers of intermetallic phases located along the cell boundaries of atomized droplets are replaced by discrete precipitates formed predominantly at the same places. Some finer precipitates of the Mg(Zn,Cu,Al)2 and Al2CuMg phases are formed in the grain’s interior. No peaks from the Al3Zr phase were found.
- Recrystallization occurs during the SPS of milled powders. A reduction in introduced strain and an increase in the mean grain size of up to 365 nm was observed. The grains are separated predominantly by high-angle boundaries. A faster precipitation of the Mg(Zn,Cu,Al)2 and Al3Zr phases can be explained by an accelerated diffusion caused by a high density of dislocations and grain boundaries in the milled powder.
- An extremely high microhardness value (343 HV) was observed in the milled powder. A high density of dislocation and very small (nanocrystalline) grain size are predominantly responsible for this value.
- SPS increases the microhardness of the originally atomized material from 97 to 161 HV. This increase results from the formation of small precipitates during slow cooling from the temperature of sintering and during a long-term stay at room temperature (natural aging).
- The microhardness of the originally milled material is reduced from 343 to 195 HV during SPS. This reduction can be explained by recrystallization, a decrease in dislocation density, and an increase in the grain size. Despite this, the microhardness is about 20% higher than that of the peak-aged ingot metallurgical counterpart.
- The contribution of Zr addition to the material strength is relatively small. The Al3Zr is believed to significantly contribute to the retaining of a fine microstructure during the SPS process.
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Lawley, A. Trends in Atomization and Consolidation of Powders for High-Temperature Aerospace Materials. In MiCon 86: Optimization of Processing, Properties, and Service Performance Through Microstructural Control; ASTM STP 979; Bramfitt, B.L., Benn, R.C., Brinkmann, C.R., Voort, G.F.V., Eds.; American Society for Testing and Materials: Philadelphia, PA, USA, 1988; pp. 193–201. [Google Scholar] [CrossRef]
- Bachaga, T.; Daly, R.; Escoda, L.; Suñol, J.J.; Khitouni, M. Amorphization of Al50(Fe2B)30Nb20 mixture by mechanical alloying. J. Metall. Mater. Trans. A 2013, 44, 4718–4724. [Google Scholar] [CrossRef]
- Makhlouf, M.B.; Bachaga, T.; Suñol, J.J.; Dammak, M.; Khitouni, M. Synthesis and Characterization of Nanocrystalline Al-20 at. % Cu Powders Produced by Mechanical Alloying. Metals 2016, 6, 145. [Google Scholar] [CrossRef]
- Fecht, H.-J. Nanostructure formation by mechanical attrition. Nanostruct. Mater. 1995, 6, 33–42. [Google Scholar] [CrossRef]
- Suryanarayana, C. Mechanical alloying and milling. Prog. Mater. Sci. 2001, 46, 1–184. [Google Scholar] [CrossRef]
- Orru, R.; Licheri, R.; Locci, A.M.; Cincotti, A.; Cao, G. Consolidation/synthesis of materials by electric current activated/assisted sintering. Mater. Sci. Eng. R 2009, 63, 127–287. [Google Scholar] [CrossRef]
- Guillon, O.; Gonzalez-Julian, J.; Dargatz, B.; Kessel, T.; Schierning, G.; Räthel, J.; Herrmann, M. Field-Assisted Sintering Technology/Spark Plasma Sintering: Mechanisms, Materials, and Technology Developments. Adv. Eng. Mater. 2014, 16, 830–849. [Google Scholar] [CrossRef] [Green Version]
- Suarez, M.; Fernandez, A.; Menendez, J.L.; Torrecillas, R.; Kessel, H.U.; Hennicke, J.; Kirchner, R.; Kessel, T. Challenges and Opportunities for Spark Plasma Sintering: A Key Technology for a New Generation of Materials. In Sintering Applications; Ertug, B., Ed.; InTech: Rijeka, Croatia, 2013; pp. 319–342. [Google Scholar] [CrossRef] [Green Version]
- Kwon, H.; Park, D.H.; Park, Y.; Silvain, J.F.; Kawasaki, A.; Park, Y. Spark plasma sintering behavior of pure aluminium depending on various sintering temperatures. Met. Mater. Int. 2010, 16, 71–75. [Google Scholar] [CrossRef]
- Salem, H.G.; Sadek, A.A. Fabrication of High Performance PM Nanocrystalline Bulk AA2124. J. Mater. Eng. Perform. 2010, 19, 356–367. [Google Scholar] [CrossRef]
- Rajabi, M.; Vahidi, M.; Simchi, A.; Davami, P. Effect of rapid solidification on the microstructure and mechanical properties of hot-pressed Al-20Si-5Fe alloys. Mater. Charact. 2009, 60, 1370–1381. [Google Scholar] [CrossRef]
- Malek, P.; Janecek, M.; Bartuska, P. Structure and properties of a powder metallurgy Al-Zr-Ti alloy. Kovove Mater. 2002, 40, 371–388. Available online: https://www.researchgate.net/publication/287630953_Structure_and_properties_of_a_powder_metallurgy_Al-Zr-Ti_alloy (accessed on 4 April 2017).
- Matsuki, K.; Iwaki, M.; Tokiyawa, M.; Murakami, Z. Microstructural evolution during initial stage of high-strain rate superplastic deformation in powder metallurgical 7475 Al-0.7Zr alloy. Mater. Sci. Technol. 1991, 7, 513–519. [Google Scholar] [CrossRef]
- Malek, P.; Erlebach, J.; Cieslar, M.; Knoop, F.M. Superplasticity in an Al-Zn-Mg-Cu-Zr alloy prepared by powder metallurgy. Phys. Status Solidi A 1996, 157, 275–286. [Google Scholar] [CrossRef]
- Rokni, M.R.; Widener, C.A.; Crawford, G.A. Microstructural evolution of 7075 Al gas atomized powder and high-pressure cold sprayed deposition. Surf. Coat. Technol. 2014, 251, 254–263. [Google Scholar] [CrossRef]
- Asgharzadeh, H.; Simchi, A.; Kim, H.S. Microstructural features, texture and strengthening mechanisms of nanostructured AA6063 alloy processed by powder metallurgy. Mater. Sci. Eng. A 2011, 528, 3981–3989. [Google Scholar] [CrossRef]
- Azimi, A.; Shokuhfar, A.; Zolriasatein, A. Nanostructured Al-Zn-Mg-Cu-Zr alloy prepared by mechanical alloying followed by hot pressing. Mater. Sci. Eng. A 2014, 595, 124–130. [Google Scholar] [CrossRef]
- Das, T.; Karunanithi, R.; Sinha, A.; Ghosh, K.S.; Bera, S. Deformation, decomposition and hardening of nano Al7075 alloy prepared by mechanical milling and hot pressing. Adv. Powder Technol. 2016, 27, 1874–1877. [Google Scholar] [CrossRef]
- Saheb, N.; Aliyu, I.K.; Hassan, S.F.; Al-Aqeeli, N. Matrix structure evolution and nanoreinforcement distribution in mechanically milled and spark plasma sintered Al-SiC nanocomposites. Materials 2014, 7, 6748–6767. [Google Scholar] [CrossRef] [PubMed]
- Al-Aqeeli, N. Processing of CNTs reincorced Al-based nanocomposites using different consolidation techniques. J. Nanomater. 2013, 1–10. [Google Scholar] [CrossRef]
- Molnárová, O.; Málek, P.; Lukáč, F.; Chráska, T. Spark Plasma Sintering of a Gas Atomized Al7075 Alloy: Microstructure and Properties. Materials 2016, 9, 1004. [Google Scholar] [CrossRef] [PubMed]
- Becker, H.; Dopita, M.; Stráská, J.; Málek, P.; Vilémová, M.; Rafaja, D. Microstructure and properties of spark plasma sintered Al-Zn-Mg-Cu alloy. Acta Phys. Pol. A 2015, 128, 602–605. [Google Scholar] [CrossRef]
- Zhang, J.C.; Ding, D.Y.; Zhang, W.L.; Kang, S.H.; Xu, X.L.; Gao, Y.J.; Chen, G.Z.; Chen, W.G.; You, X.H. Effect of Zr addition on microstructure and properties of Al-Mn-Si-Zn-based alloy. Trans. Nonferrous Met. Soc. China 2014, 24, 3872–3878. [Google Scholar] [CrossRef]
- Panigrahi, S.K.; Jayaganthan, R. Effect of Annealing on Thermal Stability, Precipitate Evolution, and Mechanical Properties of Cryorolled Al 7075 Alloy. Met. Mater. Trans. A 2011, 42, 3208–3217. [Google Scholar] [CrossRef]
- Tagliente, M.A.; Massaro, M. Strain-driven (0 0 2) preferred orientation of ZnO nanoparticles in ion-implanted silica. Nucl. Instrum. Methods Phys. Res. B 2008, 266, 1055–1061. [Google Scholar] [CrossRef]
- Hellebrandt, M. The Inorganic Crystal Structure Database (ICSD)—Present and Future. Crystallogr. Rev. 2004, 10, 17–22. [Google Scholar] [CrossRef]
- Stadelmann, P.A. EMS—A software package for electron diffraction analysis and HREM image simulation in materials science. Ultramicroscopy 1987, 21, 131–145. [Google Scholar] [CrossRef]
- Wert, J.A.; Paton, N.E.; Hamilton, C.H.; Mahoney, M. Grain-refinement in 7075 Aluminum by thermomechanical processing. Met. Trans. A 1981, 12, 1267–1276. [Google Scholar] [CrossRef]
- Malek, P. Superplasticity in an Al-Zn-Mg-Cu alloy. Mater. Sci. Eng. A 1991, 137, 21–26. [Google Scholar] [CrossRef]
- Turba, K.; Malek, P.; Rauch, E.F.; Cieslar, M. High strain rate superplasticity in a Zr and Sc modified 7075 aluminum alloy produced by ECAP. Mater. Sci. Forum 2008, 584–586, 164–169. [Google Scholar] [CrossRef]
- Devaraj, S.; Sankaran, S.; Kumar, R. Influence of spark plasma sintering temperature on the densification, microstructure and mechanical properties of Al-4.5 wt %Cu alloy. Acta Metall. Sin. 2013, 26, 761–771. [Google Scholar] [CrossRef]
- Gupta, M.; Mohamed, F.A.; Lavernia, E.J. Solidification characteristics of atomized Al-Ti powders. Scr. Metall. Mater. 1992, 26, 697–702. [Google Scholar] [CrossRef]
- Molnárová, O.; Málek, P.; Becker, H. The investigation of the Al7075+ 1 wt % Zr alloy prepared using spark plasma sintering. In Proceedings of the METAL 2015: 24th International Conference on Metallurgy and Materials, Brno, Czech Republic, 3–5 June 2015; pp. 1221–1226. [Google Scholar]
- Molnarova, O.; Malek, P.; Németh, G.; Kozlík, J.; Lukáč, F.; Chráska, T.; Cinert, J. The investigation of an Al7075 alloy prepared by spark plasma sintering of milled powders. In Proceedings of the METAL 2016: 25th Anniversary International Conference on Metallurgy and Materials, Brno, Czech Republic, 25–27 May 2016; pp. 1200–1205. [Google Scholar]
- Humphreys, F.J.; Huang, Y.; Brough, I.I.; Harris, C. Electron backscatter diffraction of grain and subgrain structures-resolution considerations. J. Microsc. 1999, 195, 212–216. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.B.; Tao, K.; Yang, B.; Zhang, J.S. Nanostructured Al-Zn-Mg-Cu alloy synthesized by cryomilling and spark plasma sintering. Trans. Nonferrous Met. Soc. China 2009, 19, 1110–1115. [Google Scholar] [CrossRef]
- Hulbert, D.M.; Anders, A.; Dudina, D.V.; Anderson, J.; Jiang, D.; Unuvar, C.; Anselmi-Tamburini, U.; Lavernia, E.J.; Mukherjee, A.K. The absence of plasma in “spark plasma sintering”. J. Appl. Phys. 2008, 104, 033305. [Google Scholar] [CrossRef]
- Srinivasarao, B.; Suryanarayana, C.; Oh-ishi, K.; Hano, K. Microstructure and Mechanical Properties of Al-Zr nanocomposite materials. Mater. Sci. Eng. A 2009, 518, 100–107. [Google Scholar] [CrossRef]
- Liu, Z.F.; Zhang, Z.H.; Lu, J.F.; Korznikova, V.E.; Wang, F.C. Effect of sintering temperature on microstructures and mechanical properties of spark plasma sintered nanocrystalline aluminium. Mater. Des. 2014, 64, 625–630. [Google Scholar] [CrossRef]
- Mondolfo, L.F. 4-Aluminum-Zinc Alloys. In Aluminium Alloys: Structure and Properties; Mondolfo, L.F., Ed.; Butterworth-Heinemann: London, UK, 1976; pp. 842–882. [Google Scholar] [CrossRef]
- Hardy, H.K.; Heal, T.J. Report on precipitation. Prog. Met. Phys. 1954, 5, 143–278. [Google Scholar] [CrossRef]
- Liu, J.Z.; Chen, J.H.; Yang, X.B.; Ren, S.; Wu, C.L.; Xub, H.Y.; Zoub, J. Revisiting the precipitation sequence in Al-Zn-Mg-based alloys by high-resolution transmission electron microscopy. Scr. Mater. 2010, 63, 1061–1064. [Google Scholar] [CrossRef]
- El-Khalek, A.M.A. The variation of work-hardening characteristics of Al-1 wt % Si and Al-1 wt % Si-0.1 wt % Zr-0.1 wt % Ti alloys. Phys. B Condens. Matter 2002, 315, 7–12. [Google Scholar] [CrossRef]
- Kim, I.H.; Kim, C.S.; Kim, K.T.; Kim, Z.H. Microstructural Characterization of Al-Zr Alloy with Nano-Sized Grains. Key Eng. Mater. 2006, 326–328, 429–432. [Google Scholar] [CrossRef]
- Cahn, R.W. Binary Alloy Phase Diagrams, 2nd ed.; Massalski, T.B., Okamoto, H., Subramanian, P.R., Kacprzak, L., Eds.; ASM International: Materials Park, OH, USA, 1990. [Google Scholar] [CrossRef]
- Lityńska-Dobrzyńska, L.; Ochin, P.; Góral, A.; Faryna, M.; Dutkiewicz, J. The Microstructure of Rapidly Solidified Al-Zn-Mg-Cu Alloys with Zr Addition. Solid State Phenom. 2010, 163, 42–45. [Google Scholar] [CrossRef]
- Yazdian, N.; Karimzadeh, F.; Tavoosi, M. Microstructural evolution of nanostructure 7075 aluminum alloy during isothermal annealing. J. Alloys Compd. 2010, 493, 137–141. [Google Scholar] [CrossRef]
- Patra, A.; Karak, S.K.; Pal, S. Effects of Mechanical Alloying on Solid Solubility. Adv. Eng. Forum 2016, 15, 17–24. [Google Scholar] [CrossRef]
- Piela, K.; Blaž, L.; Sierpinski, Z.; Foryš, T. Non-isothermal annealing of AA7075 aluminum alloy-structural and mechanical effects. Arch Metall. Mater. 2012, 57, 703–709. [Google Scholar] [CrossRef]
- Mondal, C.; Mukhopadhyay, A.K. On the nature of T(Al2Mg3Zn3) and S(Al2CuMg) phases present in as-cast and annealed 7055 aluminum alloy. Mater. Sci. Eng. A 2005, 391, 367–376. [Google Scholar] [CrossRef]
- Das, S.K.; Davis, A. High-performance aerospace alloys via rapid solidification processing. Mater. Sci. Eng. 1988, 98, 1–12. [Google Scholar] [CrossRef]
- Xie, G.; Ohashi, O.; Sato, T.; Yamaguchi, N.; Song, M.; Mitsuishi, K.; Furuya, K. Effect of Mg on the Sintering of Al-Mg Alloy Powders by Pulse Electric-Current Sintering Process. Mater. Trans. 2004, 45, 904–909. [Google Scholar] [CrossRef]
Element | wt % |
---|---|
Zn | 6.6 ± 0.1 |
Mg | 2.8 ± 0.1 |
Cu | 2.2 ± 0.1 |
Fe | 0.12 ± 0.01 |
Si | 0.08 ± 0.01 |
Zr | 1.30 ± 0.03 |
Al | Balance |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Molnárová, O.; Málek, P.; Veselý, J.; Šlapáková, M.; Minárik, P.; Lukáč, F.; Chráska, T.; Novák, P.; Průša, F. Nanocrystalline Al7075 + 1 wt % Zr Alloy Prepared Using Mechanical Milling and Spark Plasma Sintering. Materials 2017, 10, 1105. https://doi.org/10.3390/ma10091105
Molnárová O, Málek P, Veselý J, Šlapáková M, Minárik P, Lukáč F, Chráska T, Novák P, Průša F. Nanocrystalline Al7075 + 1 wt % Zr Alloy Prepared Using Mechanical Milling and Spark Plasma Sintering. Materials. 2017; 10(9):1105. https://doi.org/10.3390/ma10091105
Chicago/Turabian StyleMolnárová, Orsolya, Přemysl Málek, Jozef Veselý, Michaela Šlapáková, Peter Minárik, František Lukáč, Tomáš Chráska, Pavel Novák, and Filip Průša. 2017. "Nanocrystalline Al7075 + 1 wt % Zr Alloy Prepared Using Mechanical Milling and Spark Plasma Sintering" Materials 10, no. 9: 1105. https://doi.org/10.3390/ma10091105
APA StyleMolnárová, O., Málek, P., Veselý, J., Šlapáková, M., Minárik, P., Lukáč, F., Chráska, T., Novák, P., & Průša, F. (2017). Nanocrystalline Al7075 + 1 wt % Zr Alloy Prepared Using Mechanical Milling and Spark Plasma Sintering. Materials, 10(9), 1105. https://doi.org/10.3390/ma10091105