Fibre Bragg Gratings for the Monitoring of Wooden Structures
Abstract
:1. Introduction
2. Optical Fibre and Bragg Sensors
Model for Bare Optical Fibre Inserted inside the Wooden Structure
3. Results
3.1. Wooden Beam Measurements
3.1.1. Verification of FBG Application to Wood
3.1.2. Verification of Reinforcement/Wood Bonding
3.2. On-Site Tests on Reinforced Wooden Beams
Laser Doppler Vibrometer and Results Validation
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Marques, C.; Webb, D.J.; Andre, P. Polymer optical fibre sensors in human life safety. Opt. Fiber Technol. 2017, 36, 144–154. [Google Scholar] [CrossRef]
- Sophie, A.; Patrick, M.; Heidi, O.; Thomas, G.; Hugo, T.; Marques, C.A.F.; Webb, D.J.; Peng, G.-D.; Mergo, P.; Francis, B. Thermal effects on the photoelastic coefficient of polymer optical fibers. Opt. Lett. 2016, 41, 2517–2520. [Google Scholar] [CrossRef] [PubMed]
- Alberto, N.; Tavares, C.; Domingues, M.F.; Correia, S.F.H.; Marques, C.; Antunes, P.; Pinto, J.L.; Ferreira, R.A.S.; André, P.S. Relative humidity sensing using micro-cavities produced by the catastrophic fuse effect. Opt. Quantum Electron. 2016, 48, 216. [Google Scholar] [CrossRef]
- Marques, C.A.; Peng, G.D.; Webb, D.J. Highly sensitive liquid level monitoring system utilizing polymer fiber Bragg gratings. Opt. Express 2015, 23, 6058–6072. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Saez-Rodriguez, D.; Bang, O.; Webb, D.J.; Mégret, P.; Caucheteur, C. Polarization effects in polymer FBGs: Study and use for transverse force sensing. Opt. Express 2015, 23, 4581–4590. [Google Scholar] [CrossRef] [PubMed]
- Marques, C.A.; Pinto, J.L.; Nogueira, R.N. Three-parameter optical fiber sensor based on a tilted fiber Bragg grating. Appl. Opt. 2010, 49, 6085–6091. [Google Scholar] [CrossRef]
- Melo, L.; Rodrigues, J.M.M.; Farinha, A.S.F.; Marques, C.A.; Bilro, L.; Alberto, N.; Tomé, J.P.C.; Nogueira, R.N. Concentration sensor based on a tilted fiber Bragg grating for anions monitoring. Opt. Fiber Technol. 2014, 20, 422–427. [Google Scholar] [CrossRef]
- Marques, C.; Bilro, L.; Kahn, L.; Oliveira, R.A.; Webb, D.J.; Nogueira, R.N. Acousto-Optic Effect in Microstructured Polymer Fiber Bragg Gratings: Simulation and Experimental Overview. J. Lightwave Technol. 2013, 31, 1551–1558. [Google Scholar] [CrossRef]
- Pospori, A.; Marques, C.A.; Sáez-Rodríguez, D.; Nielsen, K.; Bang, O.; Webb, D.J. Thermal and chemical treatment of polymer optical fiber Bragg grating sensors for enhanced mechanical sensitivity. Opt. Fiber Technol. 2017, 36, 68–74. [Google Scholar] [CrossRef]
- Marques, R.S.; Prado, A.R.; Antunes, P.F.C.; Andrè, P.S.B.; Ribeiro, M.R.N.; Frizera, A.N.; Portes, M.J. Corrosion resistant FBG quasi-distributed sensor for crude oil tank dynamic temperature profile monitoring. Sensors 2015, 15, 30693–30703. [Google Scholar] [CrossRef] [PubMed]
- Rao, Y.J. Recent progress in application of in-fibre Bragg grating sensors. Opt. Lasers Eng. 1999, 31, 297–324. [Google Scholar] [CrossRef]
- Rao, Y.J. In fibre Bragg grating sensors. Meas. Sci. Technol. 1997, 8, 355–375. [Google Scholar] [CrossRef]
- Zhang, S.; Bae Lee, S.; Fang, X.; Sam Choi, S. In-fibre grating sensors. Opt. Lasers Eng. 1999, 32, 405–418. [Google Scholar] [CrossRef]
- Becchetti, M.; Flori, R.; Marsili, R.; Moretti, M. Comparison between digital image correlation and thermoelasticity for strain field analysis. In Proceedings of the 9th International Conference on Vibration Measurements by Laser and Noncontact Techniques and Short Course, Ancona, Italy, 22–25 June 2010; Volume 1253, pp. 233–240. [Google Scholar]
- Speranzini, E.; Agnetti, S. Post-cracking behaviour of reinforced glass beams. In Proceedings of the COST Action TU0905, Mid-Term Conference on Structural Glass, Poreč, Croatia, 18–19 April 2013. [Google Scholar]
- Speranzini, E.; Agnetti, S.; Corradi, M. Experimental analysis of adhesion phenomena in fibre-reinforced glass structures. Compos. Part B Eng. 2016, 101, 155–166. [Google Scholar] [CrossRef]
- Marsili, R.; Rossi, G.L.; Becchetti, M.; Flori, R. Stress and strain measurements by image correlation and Thermoelasticity. In Proceedings of the Society for Experimental Mechanics—SEM Annual Conference and Exposition on Experimental and Applied Mechanics, Albuquerque, NM, USA, 1–4 June 2009; Volume 1, pp. 70–75. [Google Scholar]
- Marsili, R.; Garinei, A. Thermoelastic Stress Analysis of the Contact between a Flat Plate and a Cylinder. Measurement 2014, 52, 102–110. [Google Scholar] [CrossRef]
- Marsili, R.; Garinei, A. Design of an optical measurement system for dynamic testing. Measurement 2013, 46, 1715–1721. [Google Scholar] [CrossRef]
- Kersey, A.D.; Berkoff, T.A.; Morey, W.W. Multiplexed fibre Bragg grating strain-sensor system with a fibre Fabry-Perot wavelength filter. Opt. Lett. 1993, 18, 1370–1372. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, L.A.; Diatzikis, E.V.; Moreira, P.J.; Santos, J.L.; Farachi, F. Application of multimode laser diods in the interrogation of fibre Bragg grating sensor. Opt. Fiber Technol. 2000, 6, 356–387. [Google Scholar] [CrossRef]
- Moses, E.I.; Tang, C.L. High sensitivity laser wavelength-modulation spectroscopy. Opt. Lett. 1997, 1, 115–117. [Google Scholar] [CrossRef]
- Kang, S.C.; Yoon, H.; Lee, S.B.; Choi, S.S.; Lee, B. Real-time measurement for static and dynamic strain using a fibre Bragg grating and ASE profile of EDFA. Opt. Fiber Sens. 1999, 3746, 530. [Google Scholar]
- Rochford, K.B.; Dyer, S.D. Dense wavelength demultiplexing of interferometrically interrogated fibre Bragg grating sensors. In Proceedings of the 13th International Conference on Optical Fiber Sensors, Kyongju, Korea, 12–16 April 1999; pp. 149–152. [Google Scholar]
- Zhang, L.; Liu, Y.; Williams, J.A.R.; Bennion, I. Enhanced multiplexing capacity of FBGs strain sensing using combination of intensity and wavelength division multiplexing. In Proceedings of the 13th International Conference on Optical Fiber Sensors, Kyongju, Korea, 13 December 2017; pp. 153–156. [Google Scholar]
- Dakin, J.P.; Volanthen, M. Distributed and multiplexed fibre grating sensors. In Proceedings of the Fiber Optic Sensor Technology and Applications, Kyongju, Korea, 9 December 1999; pp. 134–140. [Google Scholar]
- Ansari, F.; Libo, Y. Mechanics of bond and interface shear transfer in optical fiber sensors. J. Eng. Mech. 1998, 124, 385–394. [Google Scholar] [CrossRef]
- Geert, L. Multi-axial strain transfer from laminated CFRP composites to embedded Bragg sensor: I. Parametric study. Smart Mater. Struct. 2010, 19, 105017. [Google Scholar]
- Li, W.Y.; Cheng, C.C.; Lo, Y.L. Investigation of strain transmission of surface-bonded FBGs used as strain sensors. Sen. Actuators A Phys. 2009, 149, 201–207. [Google Scholar] [CrossRef]
- Henault, J.-M. Quantitative strain measurement and crack detection in RC structures using a truly distributed fiber optic sensing system. Constr. Build. Mater. 2012, 37, 916–923. [Google Scholar] [CrossRef]
- Li, D.S. Strain transferring analysis of fiber Bragg grating sensors. Opt. Eng. 2006, 45, 024402. [Google Scholar] [CrossRef]
- Hegedu, G.; Sarkadi, T.; Czigány, T. Analysis of the Light Transmission Ability of Reinforcing Glass Fibers Used in Polymer Composites. Materials 2017, 10, 637. [Google Scholar] [CrossRef] [PubMed]
- Xavier, J.; Fernandes, J.R.A.; Frazấo, O.; Morais, J.J.L. Measuring mode I cohesive law of wood bonded joints based on digital image correlation and fibre Bragg grating sensors. Compos. Struct. 2015, 121, 83–89. [Google Scholar] [CrossRef]
- Falciai, R.; Trono, C.; Laterna, G.; Castelli, C. Continuous monitoring of wooden works of art using fiber Bragg grating sensors. J. Cult. Heritage 2003, 4, 285–290. [Google Scholar] [CrossRef]
- Xavier, J.; de Jesus, A.M.P.; Morais, J.J.L.; Pinto, J.M.T. Stereovision measurements on evaluating the modulus of elasticity of wood by compression tests parallel to the grain. Constr. Build. Mater. 2012, 26, 207–215. [Google Scholar] [CrossRef]
- Xavier, J.; Avril, S.; Pierron, F.; Morais, J. Variation of transverse and shear stiffness properties of wood in a tree. Compos. Part A Appl. 2009, 40, 1953–1960. [Google Scholar] [CrossRef]
- Pereira, J.; Xavier, J.; Morais, J.; Lousada, J. Assessing wood quality by spatial variation of elastic properties within the stem: Case study of Pinus pinaster in the transverse plane. Can. J. For. Res. 2014, 44, 107–117. [Google Scholar] [CrossRef]
- Speranzini, E.; Agnetti, S. Structural performance of natural fibres reinforced timber beams. In Proceedings of the 6th International Conference on FRP Composites in Civil Engineering—CICE2012, Roma, Italy, 13–15 June 2012. [Google Scholar]
- Speranzini, E.; Tralascia, S. Engineered Lumber: LVL and Solid Wood Reinforced with Natural Fibres. In Proceedings of the WCTE 2010—Word Conference on Timber Engineering, Trento, Italy, 20–24 June 2010; pp. 1685–1690. [Google Scholar]
- Corradi, M.; Borri, A.; Castori, G.; Speranzini, E. Fully reversible reinforcement of softwood beams with unbounded composite plates. Compos. Struct. 2016, 149, 54–68. [Google Scholar] [CrossRef]
- Speranzini, E.; Marsili, R.; Moretti, M.; Rossi, G.L. Image analysis technique for material behaviour evaluation in civil structures. Materials 2017, 10, 770. [Google Scholar] [CrossRef] [PubMed]
- Corradi, M.; Borri, A.; Righetti, L.; Speranzini, E. Uncertainty analysis of FRP reinforced timber beams. Compos. Part B 2017, 113, 174–184. [Google Scholar] [CrossRef]
- Marsili, R.; Garinei, A. Development of a new capacitive matrix for a pressure distribution measurement. Int. J. Ind. Ergon. 2014, 44, 114–119. [Google Scholar] [CrossRef]
- Brouckaert, J.F.; Marsili, R.; Rossi, G. Development and experimental characterization of a new non contact sensor. In Proceedings of the 10th International Conference on Vibration Measurements by Laser and Noncontact Techniques-AIVELA, Ancona, Italy, 27–29 June 2012; Volume 1457, pp. 61–68. [Google Scholar]
- Cardelli, E.; Faba, A.; Marsili, R.; Rossi, G.; Tomassini, R. Magnetic nondestructive testing of blade tips. J. Appl. Phys. 2015, 117, 17A705. [Google Scholar] [CrossRef]
- Marchetti, B.; Montanini, R.; Rondini, C.; Maggiorana, P.; Rossi, G. Definition of FBG sensor photoelasticity coefficient by laser Doppler vibrometry. Proceedings the Fifth International Conference on Vibration Measurements by Laser, Ancona, Italy, 19–21 June 2002; Volume 4827. [Google Scholar]
- Marsili, R.; Brustenga, G.; Moretti, M.; Pirisinu, J.; Rossi, G. Measurement on rotating mechanical component by thermoelasticity. J. Appl. Mech. Mater. 2005, 3, 337–342. [Google Scholar]
- Speranzini, E.; Agnetti, S. The technique of digital image correlation to identify defects in glass structures. Struct. Control Health Monit. 2014, 21, 1015–1029. [Google Scholar] [CrossRef]
- Rondini, C.; Rossi, G. Development of a load cell based on fibre Bragg gratings sensors. In Proceedings of the Optical Measurement Systems for Industrial Inspection III, Münich, Germany, 30 May 2003. [Google Scholar]
- Lv, L.Y.; Wang, S.M.; Jiang, L.; Zhang, F.; Cao, Z.T.; Wang, P.; Jiang, Y.; Lu, Y.F. Simultaneous measurement of strain and temperature by two peanut tapers with embedded fiber Bragg grating. Appl. Opt. 2015, 54, 10678–10683. [Google Scholar] [CrossRef] [PubMed]
- Lima, H.F.; Antunes, P.F.; Pinto, J.L.; Nogueir, R.N. Simultaneous Measurement of strain and temperature with a single Fiber Bragg Grating written in a tapered optical fiber. IEEE Sens. J. 2010, 10, 269–273. [Google Scholar] [CrossRef]
- Ruzek, R.; Kadlec, M.; Tserpes, K.; Karachalios, E. Monitoring of compressive behaviour of stiffened composite panels using embedded fibre optic and strain gauge sensors. Int. J. Struct. Integr. 2017, 8, 134–150. [Google Scholar] [CrossRef]
- Kuang, K.S.C.; Kenny, R.; Whelan, M.P.; Cantwell, W.J.; Chalker, P.R. Embedded fibre Bragg grating sensors in advanced composite materials. Compos. Sci. Technol. 2001, 61, 1379–1387. [Google Scholar] [CrossRef]
- De Normalisation, C.E. Timber Structures—Structural Timber and Glued Laminated Timber-Determination of Some Physical and Mechanical Properties; British Standards Institution: London, UK, 2010. [Google Scholar]
- Antonio, B. Historicol Masonry Handbook; DEI, Genio Civile Publisher: Rome, Italy, 2011; Volume 2. [Google Scholar]
- Marsili, R.; Moretti, M.; Rossi, G. Thermoelastic Modal Stress Analysis. In Proceedings of the IMAC XXVI Conference & Exposition on Structural Dynamic, Orlando, FL, USA, 4–7 February 2008. [Google Scholar]
FBG Properties | Micron Optics FBG Interrogation System Properties | ||
---|---|---|---|
FBG Length | 10 mm | Acquisition frequency | 1000 Hz |
Coating in FBG length | no | Wavelength range | 160 nm |
Strain limit | 5000 με | Wavelength accuracy | 1 pm |
Strain sensitivity | ~1.2 pm/με | Stability | 1 pm |
Operating temperature range | −40 to 120 C | Repeatability | 0.05 pm |
Thermal response | ~9.9 pm/C | Optical connectors | LC/APC * |
Fibre lead length | 1 m (±10 cm), each end | Dynamic range | 35 dB peak |
Fibre type | SMF28-Compatible | ||
Fibre coating | polyimide |
DAMPING | LASER Doppler Vibrometer | FBG Sensor | ||
---|---|---|---|---|
Before | After | Before | After | |
secondary beam | 0.0851 | 0.112 | 0.0850 | 0.115 |
primary beam | 0.0577 | 0.061 | 0.0579 | 0.0648 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marsili, R.; Rossi, G.; Speranzini, E. Fibre Bragg Gratings for the Monitoring of Wooden Structures. Materials 2018, 11, 7. https://doi.org/10.3390/ma11010007
Marsili R, Rossi G, Speranzini E. Fibre Bragg Gratings for the Monitoring of Wooden Structures. Materials. 2018; 11(1):7. https://doi.org/10.3390/ma11010007
Chicago/Turabian StyleMarsili, Roberto, Gianluca Rossi, and Emanuela Speranzini. 2018. "Fibre Bragg Gratings for the Monitoring of Wooden Structures" Materials 11, no. 1: 7. https://doi.org/10.3390/ma11010007
APA StyleMarsili, R., Rossi, G., & Speranzini, E. (2018). Fibre Bragg Gratings for the Monitoring of Wooden Structures. Materials, 11(1), 7. https://doi.org/10.3390/ma11010007