Cellular Automata Modeling of Ostwald Ripening and Rayleigh Instability
Abstract
:1. Introduction
2. Modeling
2.1. Curvature-Driven Phase Interface Migration
2.2. Curvature-Driven Grain Boundary Migration
2.3. The CA Model
3. Results and Discussion
3.1. Ostwald Ripening
3.2. Rayleigh Instability
4. Conclusions
Funding
Conflicts of Interest
References
- Rayleigh, L. On the instability of jets. Proc. Lond. Math. Soc. 1878, 1, 4–13. [Google Scholar] [CrossRef]
- Sharma, G.; Ramanujan, R.; Tiwari, G. Instability mechanisms in lamellar microstructures. Acta Mater. 2000, 48, 875–889. [Google Scholar] [CrossRef]
- Stefansson, N.; Semiatin, S. Mechanisms of globularization of Ti-6Al-4V during static heat treatment. Metall. Mater. Trans. A 2003, 34, 691–698. [Google Scholar] [CrossRef]
- Bartholomeusz, M.F.; Wert, J.A. The effect of thermal exposure on microstructural stability and creep resistance of a two-Phase TiAl/Ti3 Al lamellar alloy. Metall. Mater. Trans. A 1994, 25, 2371–2381. [Google Scholar] [CrossRef]
- Schnabel, J.; Bargmann, S. Accessing Colony Boundary Strengthening of Fully Lamellar TiAl Alloys via Micromechanical Modeling. Materials 2017, 10, 896. [Google Scholar] [CrossRef] [PubMed]
- Furuta, S.; Kobayashi, M.; Uesugi, K.; Takeuchi, A.; Aoba, T.; Miura, H. Observation of Morphology Changes of Fine Eutectic Si Phase in Al-10%Si Cast Alloy during Heat Treatment by Synchrotron Radiation Nanotomography. Materials 2018, 11, 1308. [Google Scholar] [CrossRef] [PubMed]
- Chou, T.; Kelly, A.; Okura, A. Fibre-reinforced metal-matrix composites. Composites 1985, 16, 187–206. [Google Scholar] [CrossRef]
- Lifshitz, I.M.; Slyozov, V.V. The kinetics of precipitation from supersaturated solid solutions. J. Phys. Chem. Solids 1961, 19, 35–50. [Google Scholar] [CrossRef]
- Wagner, C. Theory of precipitate change by redissolution. Z. Elektrochem. 1961, 65, 581–591. [Google Scholar]
- Ardell, A.J.; Ozolins, V. Trans-interface diffusion-controlled coarsening. Nat. Mater. 2005, 4, 309–316. [Google Scholar] [CrossRef] [PubMed]
- Ardell, A.J. Quantitative predictions of the trans-interface diffusion-controlled theory of particle coarsening. Acta Mater. 2010, 58, 4325–4331. [Google Scholar] [CrossRef]
- Ardell, A.J. Trans-interface-diffusion-controlled coarsening of γ′ precipitates in ternary Ni–Al–Cr alloys. Acta Mater. 2013, 61, 7828–7840. [Google Scholar] [CrossRef]
- Ardell, A.J. Trans-interface-diffusion-controlled coarsening in ternary alloys. Acta Mater. 2013, 61, 7749–7754. [Google Scholar] [CrossRef]
- Ardell, A.J. Non-integer temporal exponents in trans-interface diffusion-controlled coarsening. J. Mater. Sci. 2016, 51, 6133–6148. [Google Scholar] [CrossRef] [Green Version]
- Fan, D.; Chen, L.Q.; Chen, S.P.; Voorhees, P.W. Phase field formulations for modeling the Ostwald ripening in two-phase systems. Comput. Mater. Sci. 1998, 9, 329–336. [Google Scholar] [CrossRef]
- Fan, D.; Chen, S.P.; Chen, L.Q.; Voorhees, P.W. Phase-field simulation of 2-D Ostwald ripening in the high volume fraction regime. Acta Mater. 2002, 50, 1895–1907. [Google Scholar] [CrossRef]
- Kim, S.G. Large-scale three-dimensional simulation of Ostwald ripening. Acta Mater. 2007, 55, 6513–6525. [Google Scholar] [CrossRef]
- Li, J.; Guo, C.; Ma, Y.; Wang, Z.; Wang, J. Effect of initial particle size distribution on the dynamics of transient Ostwald ripening: A phase field study. Acta Mater. 2015, 90, 10–26. [Google Scholar] [CrossRef]
- Tikare, V.; Cawley, J.D. Numerical simulation of grain growth in liquid phase sintered materials—I. Model. Acta Mater. 1998, 46, 1333–1342. [Google Scholar] [CrossRef]
- Tikare, V.; Cawley, J.D. Numerical simulation of grain growth in liquid phase sintered materials—II. Study of isotropic grain growth. Acta Mater. 1998, 46, 1343–1356. [Google Scholar] [CrossRef]
- Lee, S.B.; Rickman, J.M.; Rollett, A.D. Three-dimensional simulation of isotropic coarsening in liquid phase sintering I: A model. Acta Mater. 2007, 55, 615–626. [Google Scholar] [CrossRef] [Green Version]
- Luque, A.; Aldazabal, J.; Martin-Meizoso, A.; Martinez-Esnaola, J.; Sevillano, J.G.; Farr, R. Simulation of the microstructural evolution during liquid phase sintering using a geometrical Monte Carlo model. Model. Simul. Mater. Sci. Eng. 2005, 13, 1057. [Google Scholar] [CrossRef]
- Young, M.; Davies, C. Cellular automaton modelling of precipitate coarsening. Scripta Mater. 1999, 41, 697–701. [Google Scholar] [CrossRef]
- Nichols, F.; Mullins, W. Morphological changes of a surface of revolution due to capillarity-induced surface diffusion. J. Appl. Phys. 1965, 36, 1826–1835. [Google Scholar] [CrossRef]
- Nichols, F.; Mullins, W. Surface- and volume-diffusion contributions to morphological changes driven by capillarity. AIME Metall. Soc. Trans. 1965, 233, 1840–1848. [Google Scholar]
- Joshi, C.; Abinandanan, T.; Choudhury, A. Phase field modelling of rayleigh instabilities in the solid-state. Acta Mater. 2016, 109, 286–291. [Google Scholar] [CrossRef]
- Joshi, C.; Abinandanan, T.A.; Mukherjee, R.; Choudhury, A. Destabilisation of nanoporous membranes through GB grooving and grain growth. Comput. Mater. Sci. 2017, 139, 75–83. [Google Scholar] [CrossRef]
- Chakrabarti, T.; Verma, N.; Manna, S. Grain boundary driven Plateau–Rayleigh instability in multilayer nanocrystalline thin film: A phase-field study. Mater. Des. 2017, 119, 425–436. [Google Scholar] [CrossRef] [Green Version]
- Wang, F.; Nestler, B. Detachment of nanowires driven by capillarity. Scr. Mater. 2016, 113, 167–170. [Google Scholar] [CrossRef]
- Kubendran Amos, P.G.; Mushongera, L.T.; Nestler, B. Phase-field analysis of volume-diffusion controlled shape-instabilities in metallic systems-I: 2-Dimensional plate-like structures. Comput. Mater. Sci. 2018, 144, 363–373. [Google Scholar] [CrossRef]
- Kubendran Amos, P.G.; Mushongera, L.T.; Mittnacht, T.; Nestler, B. Phase-field analysis of volume-diffusion controlled shape-instabilities in metallic systems-II: Finite 3-dimensional rods. Comput. Mater. Sci. 2018, 144, 374–385. [Google Scholar] [CrossRef]
- Raabe, D. Cellular automata in materials science with particular reference to recrystallization simulation. Annu. Rev. Mater. Res. 2002, 32, 53–76. [Google Scholar] [CrossRef]
- Raabe, D.; Becker, R.C. Coupling of a crystal plasticity finite-element model with a probabilistic cellular automaton for simulating primary static recrystallization in aluminium. Model. Simul. Mater. Sci. Eng. 2000, 8, 445. [Google Scholar] [CrossRef]
- Zhang, T.; Li, L.; Lu, S.-H.; Gong, H.; Wu, Y.-X. Comparisons of Different Models on Dynamic Recrystallization of Plate during Asymmetrical Shear Rolling. Materials 2018, 11, 151. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Xu, Q.; Gong, X.; Su, X.; Liu, B. Experimental and Numerical Studies on Recrystallization Behavior of Single-Crystal Ni-Base Superalloy. Materials 2018, 11, 1242. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Xu, Q. Simulation and Experimental Studies on Grain Selection and Structure Design of the Spiral Selector for Casting Single Crystal Ni-Based Superalloy. Materials 2017, 10, 1236. [Google Scholar] [CrossRef] [PubMed]
- Lan, Y.; Li, D.; Li, Y. A mesoscale cellular automaton model for curvature-driven grain growth. Metall. Mater. Trans. B 2006, 37, 119–129. [Google Scholar] [CrossRef]
- Han, F.; Tang, B.; Kou, H.; Li, J.; Feng, Y. Cellular automata modeling of static recrystallization based on the curvature driven subgrain growth mechanism. J. Mater. Sci. 2013, 48, 7142–7152. [Google Scholar] [CrossRef]
- Han, F.; Tang, B.; Kou, H.; Cheng, L.; Li, J.; Feng, Y. Static recrystallization simulations by coupling cellular automata and crystal plasticity finite element method using a physically based model for nucleation. J. Mater. Sci. 2014, 49, 3253–3267. [Google Scholar] [CrossRef]
- Han, F.; Tang, B.; Kou, H.; Li, J.; Feng, Y. Cellular automata simulations of grain growth in the presence of second-phase particles. Model. Simul. Mater. Sci. Eng. 2015, 23, 065010. [Google Scholar] [CrossRef]
- Mason, J. Grain boundary energy and curvature in Monte Carlo and cellular automata simulations of grain boundary motion. Acta Mater. 2015, 94, 162–171. [Google Scholar] [CrossRef]
- Zheng, C.; Raabe, D. Interaction between recrystallization and phase transformation during intercritical annealing in a cold-rolled dual-phase steel: A cellular automaton model. Acta Mater. 2013, 61, 5504–5517. [Google Scholar] [CrossRef]
- Janssens, K. An introductory review of cellular automata modeling of moving grain boundaries in polycrystalline materials. Math. Comput. Simulat. 2010, 80, 1361–1381. [Google Scholar] [CrossRef]
- Madej, L.; Sieradzki, L.; Sitko, M.; Perzynski, K.; Radwanski, K.; Kuziak, R. Multi scale cellular automata and finite element based model for cold deformation and annealing of a ferritic–pearlitic microstructure. Comput. Mater. Sci. 2013, 77 (Suppl. C), 172–181. [Google Scholar]
- Sieradzki, L.; Madej, L. A perceptive comparison of the cellular automata and Monte Carlo techniques in application to static recrystallization modeling in polycrystalline materials. Comput. Mater. Sci. 2013, 67 (Suppl. C), 156–173. [Google Scholar] [CrossRef]
- Christian, J.W. The Theory of Transformations in Metals and Alloys; Oxford: Pergamon, Turkey, 2002. [Google Scholar]
- Loginova, I.; Odqvist, J.; Amberg, G.; Ågren, J. The phase-field approach and solute drag modeling of the transition to massive γ → α transformation in binary Fe-C alloys. Acta Mater. 2003, 51, 1327–1339. [Google Scholar] [CrossRef]
- Sietsma, J.; van der Zwaag, S. A concise model for mixed-mode phase transformations in the solid state. Acta Mater. 2004, 52, 4143–4152. [Google Scholar] [CrossRef]
- Bos, C.; Sietsma, J. A mixed-mode model for partitioning phase transformations. Scr. Mater. 2007, 57, 1085–1088. [Google Scholar] [CrossRef]
- Baldan, A. Review progress in Ostwald ripening theories and their applications to nickel-base superalloys Part I: Ostwald ripening theories. J. Mater. Sci. 2002, 37, 2171–2202. [Google Scholar] [CrossRef]
- Burke, J.E.; Turnbull, D. Recrystallization and grain growth. Prog. Met. Phys. 1952, 3, 220–292. [Google Scholar] [CrossRef]
- Mullins, W.W. Two-Dimensional Motion of Idealized Grain Boundaries. J. Appl. Phys. 1956, 27, 900–904. [Google Scholar] [CrossRef]
- Humphreys, F. A unified theory of recovery, recrystallization and grain growth, based on the stability and growth of cellular microstructures—I. The basic model. Acta Mater. 1997, 45, 4231–4240. [Google Scholar] [CrossRef]
- Read, W.T.; Shockley, W. Dislocation models of crystal grain boundaries. Phys. Rev. 1950, 78, 275. [Google Scholar] [CrossRef]
- Read, W.T. Dislocations in Crystals; McGraw-Hill: New York, NY, USA, 1953. [Google Scholar]
- Bullard, J.; Garboczi, E.; Carter, W.; Fuller, E. Numerical methods for computing interfacial mean curvature. Comput. Mater. Sci. 1995, 4, 103–116. [Google Scholar]
- Frette, O.I.; Virnovsky, G.; Silin, D. Estimation of the curvature of an interface from a digital 2D image. Comput. Mater. Sci. 2009, 44, 867–875. [Google Scholar]
- Zheng, C.; Raabe, D.; Li, D. Prediction of post-dynamic austenite-to-ferrite transformation and reverse transformation in a low-carbon steel by cellular automaton modeling. Acta Mater. 2012, 60, 4768–4779. [Google Scholar] [CrossRef]
- McLean, J.G.; Krishnamachari, B.; Peale, D.; Chason, E.; Sethna, J.P.; Cooper, B. Decay of isolated surface features driven by the Gibbs-Thomson effect in an analytic model and a simulation. Phys. Rev. B 1997, 55, 1811. [Google Scholar] [CrossRef]
- White, R.; Fisher, S. The precipitation and growth kinetics of γ′ in Nimonic PE16. Mater. Sci. Eng. 1978, 33, 149–157. [Google Scholar] [CrossRef]
- White, R. The particle size distributions in systems evolving from interface-controlled to diffusion-controlled coarsening kinetics. Mater. Sci. Eng. 1979, 40, 15–20. [Google Scholar] [CrossRef]
- Sun, W. Kinetics for coarsening co-controlled by diffusion and a reversible interface reaction. Acta Mater. 2007, 55, 313–320. [Google Scholar] [CrossRef]
- Gusak, A.M.; Lutsenko, G.V.; Tu, K.N. Ostwald ripening with non-equilibrium vacancies. Acta Mater. 2006, 54, 785–791. [Google Scholar] [CrossRef]
- Li, H.; Sun, X.; Yang, H. A three-dimensional cellular automata-crystal plasticity finite element model for predicting the multiscale interaction among heterogeneous deformation, DRX microstructural evolution and mechanical responses in titanium alloys. Int. J. Plast. 2016, 87, 154–180. [Google Scholar] [CrossRef]
Parameter | Value | Unit |
---|---|---|
M 0 | 0.5 | mmol∙J−1·s−1 |
Qαγ | 147 | kJ∙mol−1 |
Q b | 120 | kJ∙mol−1 |
γ m | 0.56 | J·m2 |
χ | 110 | J∙(at.%)−1∙mol−1 |
V m | 7.09 × 10−6 | m3∙mol−1 |
x 0 | 0.4 | wt.% |
b | 2.58 × 10−10 | m |
© 2018 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, F. Cellular Automata Modeling of Ostwald Ripening and Rayleigh Instability. Materials 2018, 11, 1936. https://doi.org/10.3390/ma11101936
Han F. Cellular Automata Modeling of Ostwald Ripening and Rayleigh Instability. Materials. 2018; 11(10):1936. https://doi.org/10.3390/ma11101936
Chicago/Turabian StyleHan, Fengbo. 2018. "Cellular Automata Modeling of Ostwald Ripening and Rayleigh Instability" Materials 11, no. 10: 1936. https://doi.org/10.3390/ma11101936
APA StyleHan, F. (2018). Cellular Automata Modeling of Ostwald Ripening and Rayleigh Instability. Materials, 11(10), 1936. https://doi.org/10.3390/ma11101936