Simulation of Eccentric Impact of Square and Rectangular Composite Laminates Embedded with SMA
Abstract
:1. Introduction
2. The Governing Equations
2.1. The Constitutive Model of SMA Wires
2.2. Constitutive Laws of Fiber Reinforced Composites
2.3. Interlaminar Damage Model
2.4. Failure Criterion
3. Modeling Framework
4. Results and Discussions
4.1. Verification of the Results
4.2. Low Velocity Impact of SMA Reinforced Square Laminated Composite Plates
4.2.1. Typical Impact Curves of Indenter
4.2.2. Damage Patterns of SMA Reinforced Square Laminated Composite Plate
4.2.3. Effects of Indenter on Lateral Deflections of Different Points of SMAs/Square Plate
4.3. Low Velocity Impact of Rectangular Plates
4.3.1. Typical Impact Curves of Indenter
4.3.2. Damage Patterns of SMA Reinforced Rectangular Laminated Composite Plate
4.3.3. Effects of Indenter on Lateral Deflections of Different Points of SMAs/Rectangular Plate
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Paine, J.S.N.; Rogers, C.A. The response of SMA hybrid composite materials to low velocity impact. J. Intell. Mater. Syst. Struct. 1994, 5, 530–535. [Google Scholar] [CrossRef]
- Birman, V.; Chandrashekhara, K.; Sain, S. An approach to optimization of shape memory alloy hybrid composite plates subjected to low-velocity impact. Compos. Part. B. Eng. 1996, 27, 439–446. [Google Scholar] [CrossRef]
- Roh, J.H.; Kim, J.H. Hybrid smart composite plate under low velocity impact. Compos. Struct. 2002, 56, 175–182. [Google Scholar] [CrossRef]
- Tsoi, K.A.; Stalmans, R.; Schrooten, J.; Wevers, M.; Mai, Y.W. Impact damage behaviour of shape memory alloy composites. Mater. Sci. Eng. A 2003, 342, 207–215. [Google Scholar] [CrossRef]
- Meo, M.; Antonucci, E.; Duclaux, P.; Giordano, M. Finite element simulation of low velocity impact on shape memory alloy composite plates. Compos. Struct. 2005, 71, 337–342. [Google Scholar] [CrossRef]
- Kang, K.W.; Kim, J.K. Effect of shape memory alloy on impact damage behavior and residual properties of glass/epoxy laminates under low temperature. Compos. Struct. 2009, 88, 455–460. [Google Scholar] [CrossRef]
- Shi, Y.; Swait, T.; Soutis, C. Modelling damage evolution in composite laminates subjected to low velocity impact. Compos. Struct. 2012, 94, 2902–2913. [Google Scholar] [CrossRef]
- Aurrekoetxea, J.; Zurbitu, J.; de Mendibil, I.O.; Agirregomezkorta, A.; Sánchez-Soto, M.; Sarrionandia, M. Effect of superelastic shape memory alloy wires on the impact behavior of carbon fiber reinforced in situ polymerized poly (butylene terephthalate) composites. Mater. Lett. 2011, 65, 863–865. [Google Scholar] [CrossRef]
- Pappadà, S.; Rametta, R.; Largo, A.; Maffezzoli, A. Low-velocity impact response in composite plates embedding shape memory alloy wires. Polym. Compos. 2012, 33, 655–664. [Google Scholar] [CrossRef]
- Sun, M.; Wang, Z.Q.; Yang, B.; Sun, X.K. Experimental investigation of GF/epoxy laminates with different SMAs positions subjected to low-velocity impact. Compos. Struct. 2017, 171, 170–184. [Google Scholar] [CrossRef]
- Shariyat, M.; Moradi, M.; Samaee, S. Nonlinear finite element eccentric low-velocity impact analysis of rectangular laminated composite plates subjected to in-phase/anti-phase biaxial preloads. J. Solid Mech. 2012, 4, 177–194. [Google Scholar]
- Shariyat, M.; Nasab, F.F. Eccentric low-velocity impact analysis of transversely graded plates with Winkler-type elastic foundations and fully or partially supported edges. Thin-Walled Struct. 2014, 84, 112–122. [Google Scholar] [CrossRef]
- Shariyat, M.; Shariyat, S.H. Eccentric impact analysis of pre-stressed composite sandwich plates with viscoelastic cores: A novel global–local theory and a refined contact law. Compos. Struct. 2014, 117, 333–345. [Google Scholar] [CrossRef]
- Shariyat, M.; Hosseini, S.H. Accurate eccentric impact analysis of the preloaded SMA composite plates, based on a novel mixed-order hyperbolic global–local theory. Compos. Struct. 2015, 124, 140–151. [Google Scholar] [CrossRef]
- Brinson, L.C. One-dimensional constitutive behavior of shape memory alloys: Thermomechanical derivation with non-constant material functions and redefined martensite internal variable. J. Intell. Mater. Syst. Struct. 1993, 4, 229–242. [Google Scholar] [CrossRef]
- Lagoudas, D.C. Shape Memory Alloys; Springer: Boston, MA, USA, 2008; ISBN 978-0-387-47685-8. [Google Scholar]
- Cho, H.K.; Rhee, J. Nonlinear finite element analysis of shape memory alloy (SMA) wire reinforced hybrid laminate composite shells. Int. J. Nonlin. Mech. 2012, 47, 672–678. [Google Scholar] [CrossRef]
- Camanho, P.P.; Davila, C.G. Mixed-Mode Decohesion Finite Elements for the Simulation of Delamination in Composite Materials; NASA/TM-2002-211737; NASA Langley Research Center: Hampton, VA, USA, June 2002.
- Benzeggagh, M.L.; Kenane, M. Measurement of mixed-mode delamination fracture toughness of unidirectional glass/epoxy composites with mixed-mode bending apparatus. Compos. Sci. Technol. 1996, 56, 439–449. [Google Scholar] [CrossRef]
- Lopes, C.S.; Camanho, P.P.; Gürdal, Z.; Maimí, P.; González, E.V. Low-velocity impact damage on dispersed stacking sequence laminates. Part II: Numerical simulations. Compos. Sci. Technol. 2009, 69, 937–947. [Google Scholar] [CrossRef]
- Feng, D.; Aymerich, F. Finite element modelling of damage induced by low-velocity impact on composite laminates. Compos. Struct. 2014, 108, 161–171. [Google Scholar] [CrossRef]
- Meng, Q.H.; Wang, Z.Q. Micromechanical Modeling of Impact Damage Mechanisms in Unidirectional Composite Laminates. Appl. Compos. Mater. 2016, 23, 1099–1116. [Google Scholar] [CrossRef]
- Hashin, Z.; Rotem, A. A fatigue failure criterion for fiber reinforced materials. J. Compos. Mater. 1973, 7, 448–464. [Google Scholar] [CrossRef]
- Hashin, Z. Failure Criteria for Unidirectional Fiber Composites. Int. J. Appl. Mech. 1980, 47, 329–334. [Google Scholar] [CrossRef]
- Bienias, J.; Jakubczak, P.; Dadej, K. Low-velocity impact resistance of aluminium glass laminates—Experimental and numerical investigation. Compos. Struct. 2016, 152, 339–348. [Google Scholar] [CrossRef]
Parameters | Symbol | Value | Unit |
---|---|---|---|
Elastic (Young’s) modulus of austenite/martensite | , | 51.7, 47.8 | GPa |
Shear Modulus | 29.4 | GPa | |
Possion’s ratio of austenite/martensite | , | 0.3, 0.3 | - |
Mass density | 6450 | kg/m3 | |
Austenitic start/finish temperature at zero stress | , | 34.5, 49 | °C |
Martensitic start/finish temperature at zero stress | , | 18.4, 9 | °C |
Stress influence coefficient of austenite/martensite | , | 6.53, 6.53 | MPa/°C |
Reference temperature | 37 | °C | |
Maximum recoverable strain | 0.063 | - | |
Initiation/completion stress for transformation into martensite | , | 600, 670 | MPa |
Initiation/completion stress for transformation into austenite | , | 288, 254 | MPa |
Parameters | Symbol | Values | Units |
---|---|---|---|
Young’s modulus | , , | 32.062, 10.789, 10.789 | GPa |
Poisson’s ratio | , , | 0.344, 0.344, 0.344 | - |
Shear modulus | , , | 11.92, 11.92, 4.68 | GPa |
Parameters | Symbol | Values | Units |
---|---|---|---|
Ultimate tensile stress | , , | 1800, 450, 450 | MPa |
Ultimate compressive stress | , , | 1800, 450, 450 | MPa |
Ultimate shear stress | , , | 500, 550, 500 | MPa |
Parameters | Shariyat et al. Results | Present Results | ||||
---|---|---|---|---|---|---|
A | B | C | A | B | C | |
Peak force (kN) | 13.8 | 14.6 | 17 | 14.14 | 15.79 | 17.48 |
Absorbed energy (J) | 7.62 | 4.37 | 7.44 | 6.17 | 1.79 | 6.74 |
Max. displacement (mm) | −7.2 | −6.8 | −5.4 | −7.51 | −7.10 | −6.01 |
Impact Positions | Peak Force (kN) | Absorbed Energy (J) | Max. Displacement (mm) |
---|---|---|---|
P-A | 14.14 | 6.17 | −7.15 |
P-B | 15.79 | 1.79 | −7.10 |
P-C | 17.48 | 6.74 | −6.01 |
P-D | 16.47 | 4.04 | −6.66 |
P-E | 168.07 | 19.25 | −1.45 |
Impact Positions | Peak Force (kN) | Absorbed Energy (J) | Max. Displacement (mm) |
---|---|---|---|
P-A | 14.15 | 7.60 | −8.70 |
P-B | 13.45 | 4.24 | −8.64 |
P-C | 13.91 | 2.21 | −8.18 |
P-D | 15.41 | 4.85 | −7.10 |
P-E | 14.63 | 2.08 | −8.51 |
P-F | 12.46 | 35.12 | −8.63 |
P-G | 13.82 | 5.25 | −8.59 |
P-H | 14.61 | 11.30 | −7.45 |
P-I | 143.92 | 24.98 | −1.52 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, M.; Chang, M.; Wang, Z.; Li, H.; Liu, Y. Simulation of Eccentric Impact of Square and Rectangular Composite Laminates Embedded with SMA. Materials 2018, 11, 2371. https://doi.org/10.3390/ma11122371
Sun M, Chang M, Wang Z, Li H, Liu Y. Simulation of Eccentric Impact of Square and Rectangular Composite Laminates Embedded with SMA. Materials. 2018; 11(12):2371. https://doi.org/10.3390/ma11122371
Chicago/Turabian StyleSun, Min, Mengzhou Chang, Zhenqing Wang, Hao Li, and Yanfei Liu. 2018. "Simulation of Eccentric Impact of Square and Rectangular Composite Laminates Embedded with SMA" Materials 11, no. 12: 2371. https://doi.org/10.3390/ma11122371
APA StyleSun, M., Chang, M., Wang, Z., Li, H., & Liu, Y. (2018). Simulation of Eccentric Impact of Square and Rectangular Composite Laminates Embedded with SMA. Materials, 11(12), 2371. https://doi.org/10.3390/ma11122371