New Shape Function for the Bending Analysis of Functionally Graded Plate
Abstract
:1. Introduction
2. Description of the Problem
- when p = 0 the plate is homogenous, made of ceramics,
- when 0 < p < ∞ the plate has a gradient structure,
- theoretically, when p = ∞ the plate becomes homogenous again, made of metal, although the plate can be considered homogenous even when p > 20.
3. Kinematic Displacement-Strain Relations and Constitutive Equation of Elasticity for FGM
4. Bending of FGM Plates and FGM Plates on Elastic Foundation
5. Analytical Solution of the Equilibrium Equations
6. Numerical Results
7. Conclusions
- the values of the vertical displacement (deflection) and the corresponding stresses, which were obtained in this paper by using HSDT theory based on the new shape function, match the results of the same values obtained in the reference papers by using TSDT theory [58], quasi 3D theory of elasticity [59] and HSDT theories based on 13 different shape functions. However, in contrast to that, there are significant deviations of the results obtained for the values of the vertical displacement, especially for stresses , from the results obtained by CPT theory from the reference papers [60].
- the diagram of the distribution of transverse shear stresses and across the thickness of the plate shows the difference in behavior between a homogenous, ceramic or metal, plate and FGM plate. A basic property of FGM can be clearly seen, and that is the asymmetry of the stress distribution in relation to the middle plane of the plate (z = 0). The maximum values of stresses, depending on the volume fraction of certain constituents, are shifted in relation to the plane z=0, which represents a neutral plane in homogenous plates.
- the highest values of the displacement are obtained in a metal plate, the lowest in a ceramic plate and in an FGM plate, the values are somewhere in between and they depend on the volume fraction of the constituents. Based on that, it can be concluded that by varying the volume fraction of metal and ceramic, a desired bending rigidity of the plate can be achieved.
- a comparative analysis of the change of transverse shear stresses and across the thickness of the plate shows that, unlike the stress , their values do not match for all the shape functions.
- by introducing FG plate on Winkler–Pasternak model of elastic foundation is shown that the influence of the Winkler coefficient (k0) is smaller than the influence of the Pasternak coefficient (k1).
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Golak, S.; Dolata, A.J. Fabrication of functionally graded composites using a homogenised low-frequency electromagnetic field. J. Compos. Mater. 2016, 50, 1751–1760. [Google Scholar] [CrossRef]
- Watanabe, Y.; Inaguma, Y.; Sato, H.; Miura-Fujiwara, E. A Novel Fabrication Method for Functionally Graded Materials under Centrifugal Force: The Centrifugal Mixed-Powder Method. Materials 2009, 2, 2510–2525. [Google Scholar] [CrossRef] [Green Version]
- El-Hadad, S.; Sato, H.; Miura-Fujiwara, E.; Watanabe, Y. Fabrication of Al-Al3Ti/Ti3Al Functionally Graded Materials under a Centrifugal Force. Materials 2010, 3, 4639–4656. [Google Scholar] [CrossRef] [PubMed]
- Jha, D.K.; Kant, T.; Singh, R.K. A critical review of recent research on functionally graded plates. Compos. Struct. 2013, 96, 833–849. [Google Scholar] [CrossRef]
- Bharti, I.; Gupta, N.; Gupta, K.M. Novel Applications of Functionally Graded Nano, Optoelectronic and Thermoelectric Materials. IJMMM Int. J. Mater. Mech. Manuf. 2013, 1, 221–224. [Google Scholar] [CrossRef]
- Saiyathibrahim, A.; Nazirudeen, M.S.S.; Dhanapal, P. Processing Techniques of Functionally Graded Materials—A Review. In Proceedings of the International Conference on Systems, Science, Control, Communication, Engineering and Technology 2015, Coimbatore, India, 10–11 August 2015. [Google Scholar]
- Birman, V.; Byrd, L.W. Modeling and analysis of functionally graded materials and structures. Appl. Mech. Rev. 2007, 60, 195–216. [Google Scholar] [CrossRef]
- Akbarzadeh, A.H.; Abedini, A.; Chen, Z.T. Effect of micromechanical models on structural responses of functionally graded plates. Compos. Struct. 2015, 119, 598–609. [Google Scholar] [CrossRef]
- Kirchhoff, G. Uber das gleichgewicht und die bewegung einer elastischen scheibe. J. Die Reine Angew. Math. 1850, 1850, 51–88. [Google Scholar] [CrossRef]
- Mindlin, R.D. Influence of rotatory inertia and shear on flexural motions of isotropic, elastic plates. J. Appl. Mech. 1951, 18, 31–38. [Google Scholar]
- Reissner, E. On bending of elastic plates. Q. Appl. Math. 1947, 5, 55–68. [Google Scholar] [CrossRef] [Green Version]
- Reissner, E. The effect of transverse shear deformation on the bending of elastic plates. J. Appl. Mech. 1945, 12, 69–72. [Google Scholar]
- Zenkour, A.M. An exact solution for the bending of thin rectangular plates with uniform, linear, and quadratic thickness variations. Int. J. Mech. Sci. 2003, 45, 295–315. [Google Scholar] [CrossRef]
- Mohammadi, M.; Saidi, A.R.; Jomehzadeh, E. Levy solution for buckling analysis of functionally graded rectangular plates. Appl. Compos. Mater. 2010, 17, 81–93. [Google Scholar] [CrossRef]
- Bhandari, M.; Purohit, K. Static Response of Functionally Graded Material Plate under Transverse Load for Varying Aspect Ratio. Int. J. Met. 2014, 2014, 980563. [Google Scholar] [CrossRef]
- Yang, J.; Shen, H.S. Non-linear analysis of FGM plates under transverse and in plane loads. Int. J. Nonlinear Mech. 2003, 38, 467–482. [Google Scholar] [CrossRef]
- Alinia, M.M.; Ghannadpour, S.A.M. Nonlinear analysis of pressure loaded FGM plates. Compos. Struct. 2009, 88, 354–359. [Google Scholar]
- Liu, D.Y.; Wang, C.Y.; Chen, W.Q. Free vibration of FGM plates with in-plane material inhomogeneity. Compos. Struct. 2010, 92, 1047–1051. [Google Scholar] [CrossRef]
- Ruan, M.; Wang, Z.M. Transverse vibrations of moving skew plates made of functionally graded material. J. Vib. Control 2016, 22, 3504–3517. [Google Scholar] [CrossRef]
- Woo, J.; Meguid, S.A.; Ong, L.S. Nonlinear free vibration behavior of functionally graded plates. J. Sound Vib. 2006, 289, 595–611. [Google Scholar] [CrossRef]
- Hu, Y.; Zhang, X. Parametric vibrations and stability of a functionally graded plate. Mech. Based Des. Struct. 2011, 39, 367–377. [Google Scholar]
- Taczała, M.; Buczkowski, R.; Kleiber, M. Nonlinear free vibration of pre- and post-buckled FGM plates on two-parameter foundation in the thermal environment. Compos. Struct. 2016, 137, 85–92. [Google Scholar] [CrossRef]
- Xing, C.; Wang, Y.; Waisman, H. Fracture analysis of cracked thin-walled structures using a high-order XFEM and Irwin’s integral. Comput. Struct. 2019, 212, 1–19. [Google Scholar] [CrossRef]
- Kim, K.D.; Lomboy, G.R.; Han, S.C. Geometrically non-linear analysis of functionally graded material (FGM) plates and shells using a four-node quasi-conforming shell element. J. Compos. Mater. 2008, 42, 485–511. [Google Scholar] [CrossRef]
- Wu, T.L.; Shukla, K.K.; Huang, J.H. Nonlinear static and dynamic analysis of functionally graded plates. IJAME Int. J. Appl. Mech. Eng. 2006, 11, 679–698. [Google Scholar]
- Reddy, J.N. A simple higher-order theory for laminated composite plates. J. Appl. Mech. 1984, 51, 745–752. [Google Scholar] [CrossRef]
- Phan, N.D.; Reddy, J.N. Analysis of laminated composite plates using a higher-order shear deformation theory. Int. Numer. Methods Eng. 1985, 21, 2201–2219. [Google Scholar] [CrossRef]
- Reddy, J.N. Analysis of functionally graded plates. Int. Numer. Methods Eng. 2000, 47, 663–684. [Google Scholar] [CrossRef]
- Kim, J.; Reddy, J.N. A general third-order theory of functionally graded plates with modified couple stress effect and the von Kármán nonlinearity: Theory and finite element analysis. Acta Mech. 2015, 226, 2973–2998. [Google Scholar] [CrossRef]
- Dung, D.V.; Nga, N.T. Buckling and postbuckling nonlinear analysis of imperfect FGM plates reinforced by FGM stiffeners with temperature-dependent properties based on TSDT. Acta Mech. 2016, 227, 2377–2401. [Google Scholar] [CrossRef]
- Bodaghi, M.; Saidi, A.R. Thermoelastic buckling behavior of thick functionally graded rectangular plates. Arch. Appl. Mech. 2011, 81, 1555–1572. [Google Scholar] [CrossRef]
- Yang, J.; Liew, K.M.; Kitipornchai, S. Dynamic stability of laminated FGM plates based on higher-order shear deformation theory. Comput. Mech. 2004, 33, 305–315. [Google Scholar] [CrossRef]
- Akbarzadeh, A.H.; Zad, S.H.; Eslami, M.R.; Sadighi, M. Mechanical behaviour of functionally graded plates under static and dynamic loading. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2011, 225, 326–333. [Google Scholar] [CrossRef]
- Thai, H.T.; Choi, D.H. Efficient higher-order shear deformation theories for bending and free vibration analyses of functionally graded plates. Arch. Appl. Mech. 2013, 83, 1755–1771. [Google Scholar] [CrossRef]
- Thai, H.T.; Park, T.; Choi, D.H. An efficient shear deformation theory for vibration of functionally graded plates. Arch. Appl. Mech. 2013, 83, 137–149. [Google Scholar]
- Lo, K.H.; Christensen, R.M.; Wu, E.M. A high-order theory of plate deformation part 1: Homogeneous plates. J. Appl. Mech. 1977, 44, 663–668. [Google Scholar] [CrossRef]
- Lo, K.H.; Christensen, R.M.; Wu, E.M. A high-order theory of plate deformation part 2: Laminated plates. J. Appl. Mech. 1977, 44, 669–676. [Google Scholar] [CrossRef]
- Kant, T.; Swaminathan, K. Analytical solutions for free vibration of laminated composite and sandwich plates based on a higher-order refined theory. Compos. Struct. 2001, 53, 73–85. [Google Scholar] [CrossRef] [Green Version]
- Kant, T.; Swaminathan, K. Analytical solutions for the static analysis of laminated composite and sandwich plates based on a higher order refined theory. Compos. Struct. 2002, 56, 329–344. [Google Scholar] [CrossRef] [Green Version]
- Xiang, S.; Kang, G.; Xing, B. A nth-order shear deformation theory for the free vibration analysis on the isotropic plates. Meccanica 2012, 47, 1913–1921. [Google Scholar] [CrossRef]
- Song, X.; Kang, G. A nth-order shear deformation theory for the bending analysis on the functionally graded plates. Eur. J. Mech. A-Solid 2013, 37, 336–343. [Google Scholar]
- Song, X.; Kang, G.; Liu, Y. A nth-order shear deformation theory for natural frequency of the functionally graded plates on elastic foundations. Compos. Struct. 2014, 11, 224–231. [Google Scholar]
- Soldatos, K. A transverse shear deformation theory for homogeneous monoclinic plates. Acta Mech. 1992, 94, 195–220. [Google Scholar] [CrossRef]
- Aydogdu, M. A new shear deformation theory for laminated composite plates. Compos. Struct. 2009, 89, 94–101. [Google Scholar] [CrossRef]
- Mantari, J.L.; Oktem, A.S.; Soares, S.G. A new trigonometric shear deformation theory for isotropic, laminated composite and sandwich plates. Int. J. Solids Struct. 2012, 49, 43–53. [Google Scholar] [CrossRef]
- Mantari, J.L.; Bonilla, E.M.; Soares, C.G. A new tangential-exponential higher order shear deformation theory for advanced composite plates. Compos. Part B-Eng. 2014, 60, 319–328. [Google Scholar] [CrossRef]
- El Meichea, N.; Tounsia, A.; Zianea, N.; Mechaba, I.; El Abbes, A.B. A new hyperbolic shear deformation theory for buckling and vibration of functionally graded sandwich plate. Int. J. Mech. Sci. 2011, 53, 237–247. [Google Scholar] [CrossRef]
- Mechab, B.; Mechab, I.; Benaissa, S. Analysis of thick orthotropic laminated composite plates based on higher order shear deformation theory by the new function under thermo-mechanical loading. Compos. Part B-Eng. 2014, 43, 1453–1458. [Google Scholar] [CrossRef]
- Akavci, S.S. Two new hyperbolic shear displacement models for orthotropic laminated composite plates. Mech. Compos. Mater. 2010, 46, 215–226. [Google Scholar] [CrossRef]
- Viola, E.; Tornabene, F.; Fantuzzi, N. General higher-order shear deformation theories for the free vibration analysis of completely doubly-curved laminated shells and panels. Compos. Struct. 2013, 95, 639–666. [Google Scholar] [CrossRef]
- Grover, N.; Maiti, D.K.; Singh, B.N. Flexural behavior of general laminated composite and sandwich plates using a secant function based shear deformation theory. Lat. Am. J. Solids Strut. 2014, 11, 1275–1297. [Google Scholar] [CrossRef] [Green Version]
- Ambartsumyan, A.S. On the Theory of Anisotropic Shells and Plates. In Proceedings of the Non-Homogeneity in Elasticity and Plasticity: Symposium, Warsaw, Poland, 2–9 September 1958; Olszak, W., Ed.; Pergamon Press: London, UK, 1958. [Google Scholar]
- Reissner, E.; Stavsky, Y. Bending and Stretching of Certain Types of Heterogeneous Aeolotropic Elastic Plates. J. Appl. Mech. 1961, 28, 402–408. [Google Scholar] [CrossRef]
- Stein, M. Nonlinear theory for plates and shells including the effects of transverse shearing. AIAA J. 1986, 24, 1537–1544. [Google Scholar] [CrossRef]
- Mantari, J.L.; Oktem, A.S.; Soares, G.C. Bending and free vibration analysis of isotropic and multilayered plates and shells by using a new accurate higherorder shear deformation theory. Compos. Part B-Eng. 2012, 43, 3348–3360. [Google Scholar] [CrossRef]
- Karama, M.; Afaq, K.S.; Mistou, S. Mechanical behaviour of laminated composite beam by the new multi-layered laminated composite structures model with transverse shear stress continuity. Int. J. Solids Struct. 2003, 40, 1525–1546. [Google Scholar] [CrossRef]
- Reddy, J.N. Mechanics of Laminated Composite Plates and Shells: Theory and Analysis; CRC Press LLC: New York, NY, USA, 2004. [Google Scholar]
- Wu, C.P.; Li, H.Y. An RMVT-based third-order shear deformation theory of multilayered functionally graded material plates. Compos. Struct. 2010, 92, 2591–2605. [Google Scholar]
- Wu, C.P.; Chiu, K.H.; Wang, Y.M. RMVT-based meshless collocation and element-free Galerkin methods for the quasi-3D analysis of multilayered composite and FGM plates. Compos. Struct. 2011, 93, 923–943. [Google Scholar] [CrossRef]
- Carrera, E.; Brischetto, S.; Robaldo, A. Variable kinematic model for the analysis of functionally graded material plates. AIAA J. 2008, 46, 194–203. [Google Scholar] [CrossRef]
Number of Shape Function (SF) | Names of Authors | Shape Function f(z) |
---|---|---|
SF 1 | Ambartsumain [52] | |
SF 2 | Kaczkowski, Panc and Reissner [53] | |
SF 3 | Levy, Stein, Touratier [54] | |
SF 4 | Mantari at al. [55] | |
SF 5–6 | Mantari at al. [45] | |
SF 7 | Karama at al. [56], Aydogdu [44] | |
SF 8 | Mantari at al. [46] | |
SF 9 | El Meiche at al. [47] | |
SF 10 | Soldatos [43] | |
SF 11 | Akavci and Tanrikulu [49] | |
SF 12 | Akavci and Tanrikulu [49] | |
SF 13 | Mechab at al. [48] |
Material | Material Properties | |
---|---|---|
Elasticity Modulus, E[GPa] | Poisson’s Ratio, ν | |
Aluminum (Al) | ||
Alumina (Al2O3) |
p | Theory | ||||||||
---|---|---|---|---|---|---|---|---|---|
a/b = 1 | |||||||||
a/h = 10 | a/h = 5 | a/h = 10 | a/h = 5 | a/h = 10 | a/h = 5 | a/h = 10 | a/h = 5 | ||
1 | Present study | 0.5889 | 0.6687 | 1.4899 | 0.7345 | 0.6111 | 0.3034 | 0.2604 | 0.2599 |
CPT [60] | 0.5623 | ----- | 2.0150 | ----- | ----- | ----- | ----- | ----- | |
Quasi 3D [59] | 0.5876 | ----- | 1.5061 | ----- | 0.6112 | ----- | 0.2511 | ----- | |
TSDT [58] | 0.5890 | ----- | 1.4898 | ----- | 0.6111 | ----- | 0.2599 | ----- | |
SF 1 | 0.5889 | 0.6687 | 1.4898 | 0.7344 | 0.6111 | 0.3034 | 0.2607 | 0.2602 | |
SF 2 | 0.5889 | 0.6687 | 1.4898 | 0.7344 | 0.6111 | 0.3034 | 0.2607 | 0.2602 | |
SF 3 | 0.5889 | 0.6685 | 1.4894 | 0.7336 | 0.6110 | 0.3033 | 0.2621 | 0.2615 | |
SF 4 | 0.5880 | 0.6648 | 1.4888 | 0.7323 | 0.6109 | 0.3030 | 0.2566 | 0.2554 | |
SF 5 | 0.5889 | 0.6687 | 1.4898 | 0.7344 | 0.6111 | 0.3034 | 0.2607 | 0.2601 | |
SF 6 | 0.5888 | 0.6683 | 1.4908 | 0.7363 | 0.6113 | 0.3038 | 0.2551 | 0.2547 | |
SF 7 | 0.5887 | 0.6679 | 1.4891 | 0.7330 | 0.6109 | 0.3031 | 0.2624 | 0.2616 | |
SF 8 | 0.5887 | 0.6679 | 1.4891 | 0.7330 | 0.6109 | 0.3031 | 0.2623 | 0.2615 | |
SF 9 | 0.5887 | 0.6679 | 1.4891 | 0.7330 | 0.6109 | 0.3031 | 0.2623 | 0.2615 | |
SF 10 | 0.5889 | 0.6687 | 1.4898 | 0.7344 | 0.6111 | 0.3034 | 0.2605 | 0.2600 | |
SF 11 | 0.5887 | 0.6679 | 1.4902 | 0.7352 | 0.6112 | 0.3036 | 0.2569 | 0.2566 | |
SF 12 | 0.5889 | 0.6686 | 1.4895 | 0.7338 | 0.6110 | 0.3033 | 0.2617 | 0.2611 | |
SF 13 | 0.5889 | 0.6687 | 1.4898 | 0.7343 | 0.6111 | 0.3034 | 0.2609 | 0.2603 | |
2 | Present study | 0.7572 | 0.8670 | 1.3961 | 0.6838 | 0.5442 | 0.2696 | 0.2732 | 0.2726 |
CPT [60] | ----- | ----- | ----- | ----- | ----- | ----- | ----- | ----- | |
Quasi 3D [59] | 0.7571 | ----- | 1.4133 | ----- | 0.5436 | ----- | 0.2495 | ----- | |
TSDT [58] | 0.7573 | ----- | 1.3960 | ----- | 0.5442 | ----- | 0.2721 | ----- | |
SF 1 | 0.7573 | 0.8671 | 1.3960 | 0.6836 | 0.5442 | 0.2695 | 0.2736 | 0.2730 | |
SF 2 | 0.7573 | 0.8671 | 1.3960 | 0.6836 | 0.5442 | 0.2695 | 0.2736 | 0.2730 | |
SF 3 | 0.7573 | 0.8671 | 1.3954 | 0.6824 | 0.5440 | 0.2693 | 0.2763 | 0.2755 | |
SF 4 | 0.7563 | 0.8629 | 1.3940 | 0.6797 | 0.5437 | 0.2687 | 0.2741 | 0.2726 | |
SF 5 | 0.7572 | 0.8671 | 1.3961 | 0.6836 | 0.5442 | 0.2695 | 0.2735 | 0.2729 | |
SF 6 | 0.7568 | 0.8656 | 1.3975 | 0.6865 | 0.5444 | 0.2701 | 0.2653 | 0.2649 | |
SF 7 | 0.7572 | 0.8667 | 1.3949 | 0.6813 | 0.5439 | 0.2691 | 0.2777 | 0.2767 | |
SF 8 | 0.7572 | 0.8666 | 1.3948 | 0.6812 | 0.5439 | 0.2691 | 0.2777 | 0.2768 | |
SF 9 | 0.7572 | 0.8666 | 1.3948 | 0.6812 | 0.5439 | 0.2691 | 0.2777 | 0.2768 | |
SF 10 | 0.7572 | 0.8670 | 1.3961 | 0.6837 | 0.5442 | 0.2696 | 0.2733 | 0.2727 | |
SF 11 | 0.7567 | 0.8649 | 1.3969 | 0.6854 | 0.5444 | 0.2699 | 0.2667 | 0.2663 | |
SF 12 | 0.7573 | 0.8672 | 1.3956 | 0.6827 | 0.5441 | 0.2694 | 0.2755 | 0.2748 | |
SF 13 | 0.7573 | 0.8671 | 1.3960 | 0.6835 | 0.5442 | 0.2695 | 0.2739 | 0.2733 | |
4 | Present study | 0.8814 | 1.0406 | 1.1795 | 0.5707 | 0.5669 | 0.2799 | 0.2529 | 0.2523 |
CPT [60] | 0.8281 | ----- | 1.6049 | ----- | ----- | ----- | ----- | ----- | |
Quasi 3D [59] | 0.8823 | ----- | 1.1841 | ----- | 0.5671 | ----- | 0.2362 | ----- | |
TSDT [58] | 0.8815 | ----- | 1.1794 | ----- | 0.5669 | ----- | 0.2519 | ----- | |
SF 1 | 0.8814 | 1.0409 | 1.1794 | 0.5704 | 0.5669 | 0.2798 | 0.2537 | 0.2529 | |
SF 2 | 0.8814 | 1.0409 | 1.1794 | 0.5704 | 0.5669 | 0.2798 | 0.2537 | 0.2529 | |
SF 3 | 0.8818 | 1.0423 | 1.1783 | 0.5684 | 0.5667 | 0.2795 | 0.2580 | 0.2571 | |
SF 4 | 0.8815 | 1.0402 | 1.1756 | 0.5630 | 0.5662 | 0.2784 | 0.2623 | 0.2606 | |
SF 5 | 0.8814 | 1.0408 | 1.1794 | 0.5705 | 0.5669 | 0.2799 | 0.2535 | 0.2528 | |
SF 6 | 0.8802 | 1.0360 | 1.1816 | 0.5749 | 0.5673 | 0.2807 | 0.2421 | 0.2417 | |
SF 7 | 0.8820 | 1.0429 | 1.1774 | 0.5666 | 0.5665 | 0.2791 | 0.2612 | 0.2601 | |
SF 8 | 0.8820 | 1.0429 | 1.1773 | 0.5664 | 0.5665 | 0.2791 | 0.2614 | 0.2603 | |
SF 9 | 0.8820 | 1.0429 | 1.1773 | 0.5664 | 0.5665 | 0.2791 | 0.2614 | 0.2603 | |
SF 10 | 0.8814 | 1.0407 | 1.1795 | 0.5706 | 0.5669 | 0.2799 | 0.2532 | 0.2525 | |
SF 11 | 0.8798 | 1.0346 | 1.1811 | 0.5739 | 0.5672 | 0.2805 | 0.2427 | 0.2423 | |
SF 12 | 0.8817 | 1.0420 | 1.1786 | 0.5690 | 0.5668 | 0.2796 | 0.2568 | 0.2559 | |
SF 13 | 0.8815 | 1.0411 | 1.1793 | 0.5702 | 0.5669 | 0.2798 | 0.2541 | 0.2534 | |
8 | Present study | 0.9745 | 1.1828 | 0.9478 | 0.4544 | 0.5858 | 0.2886 | 0.2082 | 0.2076 |
CPT [60] | ----- | ----- | ----- | ----- | ----- | ----- | ----- | ----- | |
Quasi 3D [59] | 0.9739 | ----- | 0.9622 | ----- | 0.5883 | ----- | 0.2261 | ----- | |
TSDT [58] | 0.9747 | ----- | 0.9747 | ----- | 0.5858 | ----- | 0.2087 | ----- | |
SF 1 | 0.9746 | 1.1832 | 0.9476 | 0.4541 | 0.5858 | 0.2886 | 0.2087 | 0.2081 | |
SF 2 | 0.9746 | 1.1832 | 0.9476 | 0.4541 | 0.5858 | 0.2886 | 0.2087 | 0.2081 | |
SF 3 | 0.9749 | 1.1845 | 0.9465 | 0.4520 | 0.5856 | 0.2881 | 0.2120 | 0.2113 | |
SF 4 | 0.9739 | 1.1794 | 0.9435 | 0.4461 | 0.5850 | 0.2871 | 0.2139 | 0.2125 | |
SF 5 | 0.9745 | 1.1831 | 0.9477 | 0.4542 | 0.5858 | 0.2886 | 0.2086 | 0.2080 | |
SF 6 | 0.9730 | 1.1774 | 0.9500 | 0.4589 | 0.5863 | 0.2895 | 0.1995 | 0.1991 | |
SF 7 | 0.9751 | 1.1848 | 0.9455 | 0.4500 | 0.5854 | 0.2877 | 0.2143 | 0.2134 | |
SF 8 | 0.9751 | 1.1848 | 0.9454 | 0.4498 | 0.5854 | 0.2877 | 0.2145 | 0.2135 | |
SF 9 | 0.9751 | 1.1848 | 0.9454 | 0.4498 | 0.5854 | 0.2877 | 0.2145 | 0.2135 | |
SF 10 | 0.9745 | 1.1830 | 0.9477 | 0.4543 | 0.5858 | 0.2886 | 0.2084 | 0.2078 | |
SF 11 | 0.9727 | 1.1763 | 0.9496 | 0.4581 | 0.5861 | 0.2893 | 0.2006 | 0.2003 | |
SF 12 | 0.9749 | 1.1842 | 0.9469 | 0.4526 | 0.5856 | 0.2883 | 0.2111 | 0.2104 | |
SF 13 | 0.9746 | 1.1833 | 0.9475 | 0.4539 | 0.5858 | 0.2885 | 0.2091 | 0.2084 | |
20 | Present study | 1.1377 | 1.3727 | 0.7710 | 0.3721 | 0.6079 | 0.2993 | 0.2011 | 0.2005 |
CPT [60] | ----- | ----- | ----- | ----- | ----- | ----- | ----- | ----- | |
Quasi 3D [59] | ----- | ----- | ----- | ----- | ----- | ----- | ----- | ----- | |
TSDT [58] | ----- | ----- | ----- | ----- | ----- | ----- | ----- | ----- | |
SF 1 | 1.1377 | 1.3727 | 0.7709 | 0.3720 | 0.6078 | 0.2993 | 0.2013 | 0.2008 | |
SF 2 | 1.1377 | 1.3727 | 0.7709 | 0.3720 | 0.6078 | 0.2993 | 0.2013 | 0.2008 | |
SF 3 | 1.1374 | 1.3712 | 0.7702 | 0.3707 | 0.6076 | 0.2989 | 0.2025 | 0.2019 | |
SF 4 | 1.1338 | 1.3561 | 0.7687 | 0.3677 | 0.6073 | 0.2982 | 0.1979 | 0.1966 | |
SF 5 | 1.1377 | 1.3727 | 0.7709 | 0.3720 | 0.6078 | 0.2993 | 0.2013 | 0.2007 | |
SF 6 | 1.1375 | 1.3723 | 0.7723 | 0.3748 | 0.6083 | 0.3002 | 0.1963 | 0.1960 | |
SF 7 | 1.1368 | 1.3686 | 0.7697 | 0.3696 | 0.6075 | 0.2986 | 0.2028 | 0.2019 | |
SF 8 | 1.1367 | 1.3683 | 0.7696 | 0.3695 | 0.6075 | 0.2986 | 0.2027 | 0.2019 | |
SF 9 | 1.1367 | 1.3683 | 0.7696 | 0.3695 | 0.6075 | 0.2986 | 0.2027 | 0.2019 | |
SF 10 | 1.1377 | 1.3727 | 0.7709 | 0.3721 | 0.6079 | 0.2993 | 0.2012 | 0.2006 | |
SF 11 | 1.1375 | 1.3722 | 0.7720 | 0.3741 | 0.6081 | 0.2998 | 0.1983 | 0.1979 | |
SF 12 | 1.1375 | 1.3718 | 0.7704 | 0.3711 | 0.6077 | 0.2990 | 0.2022 | 0.2016 | |
SF 13 | 1.1377 | 1.3726 | 0.7708 | 0.3718 | 0.6078 | 0.2993 | 0.2015 | 0.2009 |
p | k0 | k1 | Theory | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
a/b = 1 | |||||||||||
a/h = 10 | a/h = 5 | a/h = 10 | a/h = 5 | a/h = 10 | a/h = 5 | a/h = 10 | a/h = 5 | ||||
5 | 0 | 0 | Present study | 0.9113 | 1.0882 | 4.2441 | 2.2107 | 0.5757 | 0.2840 | 0.1916 | 0.1911 |
SF 1 | 0.9113 | 1.0885 | 4.2447 | 2.2118 | 0.5756 | 0.2839 | 0.1929 | 0.1924 | |||
SF 2 | 0.9113 | 1.0885 | 4.2447 | 2.2118 | 0.5756 | 0.2839 | 0.1929 | 0.1924 | |||
SF 3 | 0.9118 | 1.0902 | 4.2488 | 2.2199 | 0.5754 | 0.2835 | 0.2016 | 0.2009 | |||
SF 4 | 0.9115 | 1.0885 | 4.2612 | 2.2443 | 0.5748 | 0.2824 | 0.2329 | 0.2313 | |||
SF 5 | 0.9113 | 1.0884 | 4.2445 | 2.2116 | 0.5756 | 0.2839 | 0.1927 | 0.1921 | |||
SF 6 | 0.9098 | 1.0826 | 4.2359 | 2.1945 | 0.5761 | 0.2848 | 0.1759 | 0.1756 | |||
SF 7 | 0.9121 | 1.0911 | 4.2527 | 2.2276 | 0.5752 | 0.2831 | 0.2104 | 0.2095 | |||
SF 8 | 0.9121 | 1.0911 | 4.2531 | 2.2284 | 0.5752 | 0.2831 | 0.2113 | 0.2104 | |||
SF 9 | 0.9121 | 1.0911 | 4.2531 | 2.2284 | 0.5752 | 0.2831 | 0.2113 | 0.2104 | |||
SF 10 | 0.9112 | 1.0883 | 4.2443 | 2.2110 | 0.5756 | 0.2839 | 0.1921 | 0.1916 | |||
SF 11 | 0.9094 | 1.0810 | 4.2359 | 2.1945 | 0.5760 | 0.2846 | 0.1668 | 0.1665 | |||
SF 12 | 0.9117 | 1.0898 | 4.2476 | 2.2175 | 0.5755 | 0.2836 | 0.1991 | 0.1985 | |||
SF 13 | 0.9114 | 1.0887 | 4.2450 | 2.2126 | 0.5756 | 0.2839 | 0.1937 | 0.1932 | |||
100 | 0 | Present study | 0.4967 | 0.5450 | 2.3135 | 1.1073 | 0.3138 | 0.1422 | 0.1045 | 0.0957 | |
SF 1 | 0.4967 | 0.5451 | 2.3137 | 1.1076 | 0.3137 | 0.1422 | 0.1051 | 0.0963 | |||
SF 2 | 0.4967 | 0.5451 | 2.3137 | 1.1076 | 0.3137 | 0.1422 | 0.1051 | 0.0963 | |||
SF 3 | 0.4969 | 0.5455 | 2.3154 | 1.1108 | 0.3136 | 0.1418 | 0.1098 | 0.1005 | |||
SF 4 | 0.4968 | 0.5451 | 2.3225 | 1.1239 | 0.3133 | 0.1414 | 0.1269 | 0.1158 | |||
SF 5 | 0.4967 | 0.5451 | 2.3136 | 1.1076 | 0.3137 | 0.1422 | 0.1050 | 0.0962 | |||
SF 6 | 0.4963 | 0.5436 | 2.3107 | 1.1019 | 0.3142 | 0.1430 | 0.0960 | 0.0882 | |||
SF 7 | 0.4969 | 0.5457 | 2.3172 | 1.1142 | 0.3134 | 0.1416 | 0.1146 | 0.1048 | |||
SF 8 | 0.4969 | 0.5457 | 2.3174 | 1.1146 | 0.3134 | 0.1416 | 0.1151 | 0.1052 | |||
SF 9 | 0.4969 | 0.5457 | 2.3174 | 1.1146 | 0.3134 | 0.1416 | 0.1151 | 0.1052 | |||
SF 10 | 0.4967 | 0.5450 | 2.3135 | 1.1074 | 0.3138 | 0.1422 | 0.1047 | 0.0959 | |||
SF 11 | 0.4961 | 0.5432 | 2.3112 | 1.1028 | 0.3143 | 0.1430 | 0.0910 | 0.0837 | |||
SF 12 | 0.4968 | 0.5454 | 2.3148 | 1.1098 | 0.3136 | 0.1419 | 0.1085 | 0.0993 | |||
SF 13 | 0.4967 | 0.5451 | 2.3138 | 1.6370 | 0.3137 | 0.1421 | 0.1056 | 0.0967 | |||
0 | 10 | Present study | 0.3442 | 0.3668 | 1.6032 | 0.7451 | 0.2175 | 0.0957 | 0.0724 | 0.0644 | |
SF 1 | 0.3442 | 0.3667 | 1.6033 | 0.7453 | 0.2174 | 0.0956 | 0.0728 | 0.0648 | |||
SF 2 | 0.3442 | 0.3667 | 1.6033 | 0.7453 | 0.2174 | 0.0956 | 0.0728 | 0.0648 | |||
SF 3 | 0.3443 | 0.3669 | 1.6043 | 0.7472 | 0.2172 | 0.0954 | 0.0761 | 0.0676 | |||
SF 4 | 0.3442 | 0.3667 | 1.6093 | 0.7562 | 0.2171 | 0.0951 | 0.0879 | 0.0779 | |||
SF 5 | 0.3442 | 0.3667 | 1.6033 | 0.7452 | 0.2174 | 0.0956 | 0.0727 | 0.0647 | |||
SF 6 | 0.3440 | 0.3661 | 1.6017 | 0.7421 | 0.2178 | 0.0963 | 0.0665 | 0.0594 | |||
SF 7 | 0.3443 | 0.3670 | 1.6055 | 0.7494 | 0.2171 | 0.0952 | 0.0794 | 0.0704 | |||
SF 8 | 0.3443 | 0.3671 | 1.6057 | 0.7496 | 0.2171 | 0.0952 | 0.0797 | 0.0707 | |||
SF 9 | 0.3443 | 0.3671 | 1.6057 | 0.7496 | 0.2171 | 0.0952 | 0.0797 | 0.0707 | |||
SF 10 | 0.3442 | 0.3667 | 1.6032 | 0.7451 | 0.2174 | 0.0957 | 0.0725 | 0.0645 | |||
SF 11 | 0.3439 | 0.3659 | 1.6022 | 0.7428 | 0.2178 | 0.0963 | 0.0631 | 0.0563 | |||
SF 12 | 0.3442 | 0.3669 | 1.6040 | 0.7466 | 0.2173 | 0.0955 | 0.0752 | 0.0668 | |||
SF 13 | 0.3442 | 0.3668 | 1.6034 | 1.2283 | 0.2174 | 0.0956 | 0.0731 | 0.0650 | |||
100 | 10 | Present study | 0.2617 | 0.2745 | 1.2190 | 0.5578 | 0.1654 | 0.0716 | 0.0550 | 0.0482 | |
SF 1 | 0.2617 | 0.2745 | 1.2190 | 0.5579 | 0.1653 | 0.0716 | 0.0554 | 0.0485 | |||
SF 2 | 0.2617 | 0.2745 | 1.2190 | 0.5579 | 0.1653 | 0.0716 | 0.0554 | 0.0485 | |||
SF 3 | 0.2617 | 0.2746 | 1.2197 | 0.5592 | 0.1652 | 0.0714 | 0.0578 | 0.0506 | |||
SF 4 | 0.2617 | 0.2745 | 1.2236 | 0.5661 | 0.1650 | 0.0712 | 0.0668 | 0.0583 | |||
SF 5 | 0.2617 | 0.2745 | 1.2190 | 0.5661 | 0.1653 | 0.0716 | 0.0553 | 0.0484 | |||
SF 6 | 0.2616 | 0.2741 | 1.2180 | 0.5578 | 0.1656 | 0.0721 | 0.0506 | 0.0444 | |||
SF 7 | 0.2617 | 0.2747 | 1.2206 | 0.5608 | 0.1651 | 0.0712 | 0.0604 | 0.0527 | |||
SF 8 | 0.2617 | 0.2747 | 1.2207 | 0.5610 | 0.1651 | 0.0712 | 0.0606 | 0.0529 | |||
SF 9 | 0.2617 | 0.2747 | 1.2207 | 0.5610 | 0.1651 | 0.0712 | 0.0606 | 0.0529 | |||
SF 10 | 0.2617 | 0.2745 | 1.2190 | 0.5578 | 0.1653 | 0.0716 | 0.0551 | 0.0483 | |||
SF 11 | 0.2615 | 0.2740 | 1.2184 | 0.5564 | 0.1656 | 0.0721 | 0.0479 | 0.0422 | |||
SF 12 | 0.2617 | 0.2746 | 1.2195 | 0.5588 | 0.1652 | 0.0714 | 0.0571 | 0.0500 | |||
SF 13 | 0.2617 | 0.2745 | 1.2191 | 0.9722 | 0.1653 | 0.0716 | 0.0556 | 0.0487 |
p | k0 | k1 | Theory | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
a/b =1 | |||||||||||
a/h = 10 | a/h = 5 | a/h = 10 | a/h = 5 | a/h = 10 | a/h = 5 | a/h = 10 | a/h = 5 | ||||
10 | 0 | 0 | Present study | 1.0086 | 1.2273 | 5.0843 | 2.6423 | 0.5896 | 0.2904 | 0.2101 | 0.2095 |
SF 1 | 1.0087 | 1.2275 | 5.0848 | 2.6434 | 0.5895 | 0.2903 | 0.2113 | 0.2107 | |||
SF 2 | 1.0087 | 1.2275 | 5.0848 | 2.6434 | 0.5895 | 0.2903 | 0.2113 | 0.2107 | |||
SF 3 | 1.0089 | 1.2282 | 5.0890 | 2.6515 | 0.5893 | 0.2899 | 0.2198 | 0.2190 | |||
SF 4 | 1.0071 | 1.2201 | 5.1006 | 2.6742 | 0.5888 | 0.2889 | 0.2488 | 0.2472 | |||
SF 5 | 1.0086 | 1.2275 | 5.0847 | 2.6431 | 0.5895 | 0.2903 | 0.2111 | 0.2104 | |||
SF 6 | 1.0074 | 1.2229 | 5.0758 | 2.6255 | 0.5900 | 0.2913 | 0.1944 | 0.1940 | |||
SF 7 | 1.0088 | 1.2277 | 5.0928 | 2.6590 | 0.5891 | 0.2895 | 0.2281 | 0.2272 | |||
SF 8 | 1.0088 | 1.2275 | 5.0931 | 2.6597 | 0.5891 | 0.2895 | 0.2290 | 0.2280 | |||
SF 9 | 1.0088 | 1.2275 | 5.0931 | 2.6597 | 0.5891 | 0.2895 | 0.2290 | 0.2280 | |||
SF 10 | 1.0086 | 1.2274 | 5.0845 | 2.6426 | 0.5896 | 0.2903 | 0.2105 | 0.2099 | |||
SF 11 | 1.0072 | 1.2222 | 5.0762 | 2.6263 | 0.5899 | 0.2910 | 0.1852 | 0.1849 | |||
SF 12 | 1.0088 | 1.2281 | 5.0877 | 2.6491 | 0.5894 | 0.2900 | 0.2174 | 0.2166 | |||
SF 13 | 1.0087 | 1.2276 | 5.0852 | 2.6442 | 0.5895 | 0.2903 | 0.2121 | 0.2115 | |||
100 | 0 | Present study | 0.5243 | 0.5779 | 2.6430 | 1.2440 | 0.3065 | 0.1367 | 0.1092 | 0.0986 | |
SF 1 | 0.5243 | 0.5779 | 2.6432 | 1.2444 | 0.3064 | 0.1366 | 0.1098 | 0.0992 | |||
SF 2 | 0.5243 | 0.5779 | 2.6432 | 1.2444 | 0.3064 | 0.1366 | 0.1098 | 0.0992 | |||
SF 3 | 0.5244 | 0.5780 | 2.6451 | 1.2479 | 0.3063 | 0.1364 | 0.1142 | 0.1030 | |||
SF 4 | 0.5239 | 0.5762 | 2.6534 | 1.2630 | 0.3063 | 0.1364 | 0.1294 | 0.1167 | |||
SF 5 | 0.5243 | 0.5779 | 2.6432 | 1.2443 | 0.3064 | 0.1367 | 0.1097 | 0.0990 | |||
SF 6 | 0.5240 | 0.5768 | 2.6401 | 1.2385 | 0.3069 | 0.1374 | 0.1011 | 0.0915 | |||
SF 7 | 0.5243 | 0.5779 | 2.6471 | 1.2517 | 0.3062 | 0.1363 | 0.1186 | 0.1069 | |||
SF 8 | 0.5243 | 0.5779 | 2.6474 | 1.2521 | 0.3062 | 0.1363 | 0.1190 | 0.1073 | |||
SF 9 | 0.5243 | 0.5779 | 2.6474 | 1.2521 | 0.3062 | 0.1363 | 0.1190 | 0.1073 | |||
SF 10 | 0.5243 | 0.5778 | 2.6431 | 1.2441 | 0.3064 | 0.1367 | 0.1094 | 0.0988 | |||
SF 11 | 0.5239 | 0.5767 | 2.6405 | 1.2392 | 0.3068 | 0.1373 | 0.0963 | 0.0872 | |||
SF 12 | 0.5243 | 0.5780 | 2.6445 | 1.2468 | 0.3063 | 0.1365 | 0.1130 | 0.1019 | |||
SF 13 | 0.5243 | 0.5779 | 2.6434 | 1.2447 | 0.3064 | 0.1366 | 0.1102 | 0.0995 | |||
0 | 10 | Present study | 0.3573 | 0.3813 | 1.8008 | 0.8209 | 0.2088 | 0.0902 | 0.0744 | 0.0651 | |
SF 1 | 0.3572 | 0.3813 | 1.8010 | 0.8212 | 0.2088 | 0.0902 | 0.0748 | 0.0654 | |||
SF 2 | 0.3572 | 0.3813 | 1.8010 | 0.8212 | 0.2088 | 0.0902 | 0.0748 | 0.0654 | |||
SF 3 | 0.3572 | 0.3814 | 1.8022 | 0.8234 | 0.2087 | 0.0900 | 0.0778 | 0.0680 | |||
SF 4 | 0.3570 | 0.3806 | 1.8084 | 0.8342 | 0.2087 | 0.0901 | 0.0882 | 0.0771 | |||
SF 5 | 0.3572 | 0.3813 | 1.8009 | 0.8211 | 0.2088 | 0.0902 | 0.0747 | 0.0653 | |||
SF 6 | 0.3571 | 0.3809 | 1.7992 | 0.8177 | 0.2091 | 0.0907 | 0.0689 | 0.0604 | |||
SF 7 | 0.3572 | 0.3813 | 1.8036 | 0.8259 | 0.2086 | 0.0899 | 0.0808 | 0.0705 | |||
SF 8 | 0.3572 | 0.3813 | 1.8038 | 0.8262 | 0.2086 | 0.0899 | 0.0811 | 0.0708 | |||
SF 9 | 0.3572 | 0.3813 | 1.8038 | 0.8262 | 0.2086 | 0.0899 | 0.0811 | 0.0708 | |||
SF 10 | 0.3572 | 0.3813 | 1.8009 | 0.8210 | 0.2088 | 0.0902 | 0.0745 | 0.0652 | |||
SF 11 | 0.3570 | 0.3808 | 1.7995 | 0.8183 | 0.2091 | 0.0906 | 0.0656 | 0.0576 | |||
SF 12 | 0.3572 | 0.3814 | 1.8018 | 0.8227 | 0.2087 | 0.0900 | 0.0770 | 0.0672 | |||
SF 13 | 0.3572 | 0.3813 | 1.8011 | 0.9376 | 0.2088 | 0.0901 | 0.0751 | 0.0657 | |||
100 | 10 | Present study | 0.2692 | 0.2826 | 1.3569 | 0.6084 | 0.1574 | 0.0669 | 0.0561 | 0.0482 | |
SF 1 | 0.2691 | 0.2826 | 1.3570 | 0.6086 | 0.1573 | 0.0668 | 0.0564 | 0.0485 | |||
SF 2 | 0.2691 | 0.2826 | 1.3570 | 0.6086 | 0.1573 | 0.0668 | 0.0564 | 0.0485 | |||
SF 3 | 0.2692 | 0.2826 | 1.3579 | 0.6102 | 0.1572 | 0.0667 | 0.0586 | 0.0504 | |||
SF 4 | 0.2690 | 0.2822 | 1.3628 | 0.6186 | 0.1573 | 0.0668 | 0.0664 | 0.0571 | |||
SF 5 | 0.2691 | 0.2826 | 1.3570 | 0.6086 | 0.1573 | 0.0668 | 0.0563 | 0.0484 | |||
SF 6 | 0.2691 | 0.2823 | 1.3558 | 0.6062 | 0.1576 | 0.0672 | 0.0519 | 0.0448 | |||
SF 7 | 0.2692 | 0.2826 | 1.3590 | 0.6121 | 0.1572 | 0.0666 | 0.0608 | 0.0523 | |||
SF 8 | 0.2692 | 0.2826 | 1.3591 | 0.6123 | 0.1572 | 0.0666 | 0.0611 | 0.0525 | |||
SF 9 | 0.2692 | 0.2826 | 1.3591 | 0.6123 | 0.1572 | 0.0666 | 0.0611 | 0.0525 | |||
SF 10 | 0.2691 | 0.2826 | 1.3569 | 0.6085 | 0.1573 | 0.0668 | 0.0562 | 0.0483 | |||
SF 11 | 0.2690 | 0.2823 | 1.3561 | 0.6067 | 0.1575 | 0.0672 | 0.0494 | 0.0427 | |||
SF 12 | 0.2692 | 0.2826 | 1.3576 | 0.6097 | 0.1572 | 0.0667 | 0.0580 | 0.0498 | |||
SF 13 | 0.2692 | 0.2826 | 1.3571 | 0.6087 | 0.1573 | 0.0668 | 0.0566 | 0.0486 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Čukanović, D.; Radaković, A.; Bogdanović, G.; Milanović, M.; Redžović, H.; Dragović, D. New Shape Function for the Bending Analysis of Functionally Graded Plate. Materials 2018, 11, 2381. https://doi.org/10.3390/ma11122381
Čukanović D, Radaković A, Bogdanović G, Milanović M, Redžović H, Dragović D. New Shape Function for the Bending Analysis of Functionally Graded Plate. Materials. 2018; 11(12):2381. https://doi.org/10.3390/ma11122381
Chicago/Turabian StyleČukanović, Dragan, Aleksandar Radaković, Gordana Bogdanović, Milivoje Milanović, Halit Redžović, and Danilo Dragović. 2018. "New Shape Function for the Bending Analysis of Functionally Graded Plate" Materials 11, no. 12: 2381. https://doi.org/10.3390/ma11122381
APA StyleČukanović, D., Radaković, A., Bogdanović, G., Milanović, M., Redžović, H., & Dragović, D. (2018). New Shape Function for the Bending Analysis of Functionally Graded Plate. Materials, 11(12), 2381. https://doi.org/10.3390/ma11122381