Fully Solution-Processable Fabrication of Multi-Layered Circuits on a Flexible Substrate Using Laser Processing
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Setup
2.2. Materials and Preparation
2.3. Multi-Layer Patterning Process
3. Results
4. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Gupta, R.; Walia, S.; Hösel, M.; Jensen, J.; Angmo, D.; Krebs, F.C.; Kulkarni, G.U. Solution processed large area fabrication of Ag patterns as electrodes for flexible heaters, electrochromics and organic solar cells. J. Mater. Chem. A 2014, 2, 10930–10937. [Google Scholar] [CrossRef] [Green Version]
- Ko, S.H.; Pan, H.; Grigoropoulos, C.P.; Fréchet, J.M.J.; Luscombe, C.K.; Poulikakos, D. Lithography-free high-resolution organic transistor arrays on polymer substrate by low energy selective laser ablation of inkjet-printed nanoparticle film. Appl. Phys. A Mater. Sci. Process. 2008, 92, 579–587. [Google Scholar] [CrossRef]
- Loo, Y.; Someya, T.; Baldwin, K.W.; Bao, Z.; Ho, P.; Dodabalapur, A.; Katz, H.E.; Rogers, J.A. Soft, conformable electrical contacts for organic semiconductors: High-resolution plastic circuits by lamination. Proc. Natl. Acad. Sci. USA 2002, 99, 10252–10256. [Google Scholar] [CrossRef] [PubMed]
- Zaumseil, J.; Someya, T.; Bao, Z.; Loo, Y.L.; Cirelli, R.; Rogers, J.A. Nanoscale organic transistors that use source/drain electrodes supported by high resolution rubber stamps. Appl. Phys. Lett. 2003, 82, 793–795. [Google Scholar] [CrossRef]
- Chung, S.; Jang, M.; Ji, S.B.; Im, H.; Seong, N.; Ha, J.; Kwon, S.K.; Kim, Y.H.; Yang, H.; Hong, Y. Flexible high-performance all-inkjet-printed inverters: Organo-compatible and stable interface engineering. Adv. Mater. 2013, 25, 4773–4777. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Su, M.; Zhang, C.; Gao, M.; Bao, B.; Yang, Q.; Su, B.; Song, Y. Fabrication of Nanoscale Circuits on Inkjet-Printing Patterned Substrates. Adv. Mater. 2015, 27, 3928–3933. [Google Scholar] [CrossRef] [PubMed]
- Yu, P.-C.; Hong, C.-C.; Liou, T.-M. Bendable transparent conductive meshes based on multi-layer inkjet-printed silver patterns. J. Micromech. Microeng. 2016, 26, 35012. [Google Scholar] [CrossRef]
- Jeong, J.A.; Kim, J.; Kim, H.K. Ag grid/ITO hybrid transparent electrodes prepared by inkjet printing. Sol. Energy Mater. Sol. Cells 2011, 95, 1974–1978. [Google Scholar] [CrossRef]
- Bao, Z.N.; Feng, Y.; Dodabalapur, A.; Raju, V.R.; Lovinger, A.J. High-performance plastic transistors fabricated by printing techniques. Chem. Mater. 1997, 9, 1299–1301. [Google Scholar] [CrossRef]
- Garnier, F.; Hajlaoui, R.; Yassar, A.; Srivastava, P. All-Polymer Field-Effect Transistor Realized by Printing Techniques. Science 1994, 265, 1684–1686. [Google Scholar] [CrossRef] [PubMed]
- Leppäniemi, J.; Huttunen, O.H.; Majumdar, H.; Alastalo, A. Flexography-Printed In2O3 Semiconductor Layers for High-Mobility Thin-Film Transistors on Flexible Plastic Substrate. Adv. Mater. 2015, 27, 7168–7175. [Google Scholar] [CrossRef] [PubMed]
- Furukawa, T.; Kawamura, N.; Inoue, J.; Nakada, H.; Koden, M. OLED Lighting Devices Fabricated by Flexography Printing of Silver Nanowire and Conducting Polymer. SID Symp. Dig. Tech. Pap. 2015, 46, 1355–1358. [Google Scholar] [CrossRef]
- Koo, H.; Lee, W.; Choi, Y.; Sun, J.; Bak, J.; Noh, J.; Subramanian, V.; Azuma, Y.; Majima, Y.; Cho, G. Scalability of carbon-nanotube-based thin film transistors for flexible electronic devices manufactured using an all roll-to-roll gravure printing system. Sci. Rep. 2015, 5, 14459. [Google Scholar] [CrossRef] [PubMed]
- Shin, K.H.; Nguyen, H.A.D.; Park, J.; Shin, D.; Lee, D. Roll-to-roll gravure printing of thick-film silver electrode micropatterns for flexible printed circuit board. J. Coat. Technol. Res. 2017, 14, 95–106. [Google Scholar] [CrossRef]
- Park, J.; Lee, J.; Park, S.; Shin, K.H.; Lee, D. Development of hybrid process for double-side flexible printed circuit boards using roll-to-roll gravure printing, via-hole printing, and electroless plating. Int. J. Adv. Manuf. Technol. 2016, 82, 1921–1931. [Google Scholar] [CrossRef]
- Kurra, N.; Dutta, D.; Kulkarni, G.U. Field effect transistors and RC filters from pencil-trace on paper. Phys. Chem. Chem. Phys. 2013, 15, 8367–8372. [Google Scholar] [CrossRef] [PubMed]
- Komoda, N.; Nogi, M.; Suganuma, K.; Kohno, K.; Akiyama, Y.; Otsuka, K. Printed silver nanowire antennas with low signal loss at high-frequency radio. Nanoscale 2012, 4, 3148–3153. [Google Scholar] [CrossRef] [PubMed]
- Radha, B.; Sagade, A.A.; Kulkarni, G.U. Flexible and semitransparent strain sensors based on micromolded Pd nanoparticle-carbon µ-stripes. ACS Appl. Mater. Interfaces 2011, 3, 2173–2178. [Google Scholar] [CrossRef] [PubMed]
- Sandström, A.; Dam, H.F.; Krebs, F.C.; Edman, L. Ambient fabrication of flexible and large-area organic light-emitting devices using slot-die coating. Nat. Commun. 2012, 3, 1002. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nomura, K.; Ohta, H.; Takagi, A.; Kamiya, T.; Hirano, M.; Hosono, H. Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors. Nature 2004, 432, 488–492. [Google Scholar] [CrossRef] [PubMed]
- Kwon, J.; Kyung, S.; Yoon, S.; Kim, J.J.; Jung, S. Solution-processed vertically stacked complementary organic circuits with inkjet-printed routing. Adv. Sci. 2015, 3, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Sommer-Larsen, P.; Jørgensen, M.; Søndergaard, R.R.; Hösel, M.; Krebs, F.C. It is all in the Pattern—High-Efficiency Power Extraction from Polymer Solar Cells through High-Voltage Serial Connection. Energy Technol. 2013, 1, 15–19. [Google Scholar] [CrossRef]
- Kutchoukov, V.G.; Shikida, M.; Mollinger, J.R. Bossche, a Through-wafer interconnect technology for silicon. J. Micromech. Microeng. 2004, 14, 1029–1036. [Google Scholar] [CrossRef]
- Zhuang, X.; Ergun, A.S.; Huang, Y.; Wygant, I.O.; Oralkan, O.; Khuri-Yakub, B.T. Integration of trench-isolated through-wafer interconnects with 2d capacitive micromachined ultrasonic transducer arrays. Sens. Actuators A Phys. 2007, 138, 221–229. [Google Scholar] [CrossRef] [PubMed]
- Ji, C.-H.; Herrault, F.; Allen, M.G. A metallic buried interconnect process for through-wafer interconnection. J. Micromech. Microeng. 2008, 18, 085016. [Google Scholar] [CrossRef]
- Ta, T. Interconnection and Double Layer for Flexible Electronic Circuit with Instant Inkjet Circuits. In Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, Osaka, Japan, 7–11 September 2015; pp. 181–190. [Google Scholar]
- Young, S.; Tea, W.; Noh, Y.; Seok, W. Laser Sintering of Silver Nanoparticle for Flexible Electronics. J. Korean Soc. Manuf. Technol. Eng. 2015, 1, 135–139. [Google Scholar]
- Paeng, D.; Yeo, J.; Lee, D.; Moon, S.J.; Grigoropoulos, C.P. Laser wavelength effect on laser-induced photo-thermal sintering of silver nanoparticles. Appl. Phys. A Mater. Sci. Process. 2015, 120, 1229–1240. [Google Scholar] [CrossRef]
- Mayadas, A.F.; Shatzkes, M. Electrical-resistivity model for polycrystalline films: The case of arbitrary reflection at external surfaces. Phys. Rev. B 1970, 1, 1382–1389. [Google Scholar] [CrossRef]
- Greer, J.R.; Street, R.A. Thermal cure effects on electrical performance of nanoparticle silver inks. Acta Mater. 2007, 55, 6345–6349. [Google Scholar] [CrossRef]
- Pan, H.; Ko, S.H.; Grigoropoulos, C.P. The Solid-State Neck Growth Mechanisms in Low Energy Laser Sintering of Gold Nanoparticles: A Molecular Dynamics Simulation Study. J. Heat Transf. 2008, 130, 092404. [Google Scholar] [CrossRef]
- Raciukaitis, G. Patterning of ITO Layer on Glass with High Repetition Rate Picosecond Lasers. J. Laser Micro/Nanoeng. 2007, 2, 1–6. [Google Scholar] [CrossRef]
- Liu, J.M. Simple technique for measurements of pulsed Gaussian-beam spot sizes. Opt. Lett. 1982, 7, 196–198. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.M.; Yen, R.; Kurz, H.; Bloembergen, N. Phase transformation on and charged particle emission from a silicon crystal surface, induced by picosecond laser pulses. Appl. Phys. Lett. 1981, 39, 755–757. [Google Scholar] [CrossRef]
The Number of Interconnections | Resistance (Ω) |
---|---|
None | 12.35 ± 0.33 |
1 | 12.37 ± 0.42 |
2 | 12.41 ± 0.35 |
3 | 12.40 ± 0.38 |
4 | 12.43 ± 0.36 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ji, S.Y.; Choi, W.; Kim, H.-Y.; Jeon, J.-W.; Cho, S.-H.; Chang, W.S. Fully Solution-Processable Fabrication of Multi-Layered Circuits on a Flexible Substrate Using Laser Processing. Materials 2018, 11, 268. https://doi.org/10.3390/ma11020268
Ji SY, Choi W, Kim H-Y, Jeon J-W, Cho S-H, Chang WS. Fully Solution-Processable Fabrication of Multi-Layered Circuits on a Flexible Substrate Using Laser Processing. Materials. 2018; 11(2):268. https://doi.org/10.3390/ma11020268
Chicago/Turabian StyleJi, Seok Young, Wonsuk Choi, Hoon-Young Kim, Jin-Woo Jeon, Sung-Hak Cho, and Won Seok Chang. 2018. "Fully Solution-Processable Fabrication of Multi-Layered Circuits on a Flexible Substrate Using Laser Processing" Materials 11, no. 2: 268. https://doi.org/10.3390/ma11020268
APA StyleJi, S. Y., Choi, W., Kim, H. -Y., Jeon, J. -W., Cho, S. -H., & Chang, W. S. (2018). Fully Solution-Processable Fabrication of Multi-Layered Circuits on a Flexible Substrate Using Laser Processing. Materials, 11(2), 268. https://doi.org/10.3390/ma11020268