Alloying and Properties of C14–NbCr2 and A15–Nb3X (X = Al, Ge, Si, Sn) in Nb–Silicide-Based Alloys
Abstract
:1. Introduction
2. Methodology, Results and Discussion
2.1. C14–NbCr2 Laves
2.2. A15–Nb3X
3. Conclusions
Acknowledgments
Conflicts of Interest
References
- Bewlay, B.P.; Jackson, M.R. Chapter 3.22: High temperature in situ composites: Processing and properties. In Comprehensive Composite Materials; Kelly, A., Zweben, C., Eds.; Elsevier: Amsterdam, The Netherlands, 2003; pp. 579–615. [Google Scholar]
- Jackson, M.R.; Bewaly, B.P.; Zhao, J.C. Niobium-Silicide Based Composites Resistant to High Temperature Oxidation. U.S. Patent 6,913,655 B2, 5 July 2005. [Google Scholar]
- Vellios, N.; Tsakiropoulos, P. Study of the role of Fe and Sn additions in the microstructure of Nb-24Ti-18Si-5Cr silicide based alloys. Intermetallics 2010, 18, 1729–1736. [Google Scholar] [CrossRef]
- Vellios, N.; Tsakiropoulos, P. The role of Sn and Ti additions in the microstructure of Nb-18Si base alloys. Intermetallics 2007, 15, 1518–1528. [Google Scholar] [CrossRef]
- Subramanian, P.R.; Mendiratta, M.G.; Dimiduk, D.M.; Stucke, M.A. Advanced intermetallic alloys-beyond gamma titanium aluminides. Mater. Sci. Eng. A 1997, 239–240, 1–13. [Google Scholar] [CrossRef]
- Bewlay, B.P.; Jackson, M.R.; Zhao, J.-C.; Subramanian, P.R. A review of very-high temperature Nb-silicide based composites. Metal. Mater. Trans. A 2003, 34, 2043–2052. [Google Scholar] [CrossRef]
- Zelenitsas, K.; Tsakiropoulos, P. Study of the role of Al and Cr additions in the microstructure of Nb-Ti-Si in situ composites. Intermetallics 2005, 13, 1079–1095. [Google Scholar] [CrossRef]
- Zelenitsas, K.; Tsakiropoulos, P. Study of the role of Ta and Cr additions in the microstructure of Nb-Ti-Si in situ composites. Intermetallics 2006, 14, 639–659. [Google Scholar] [CrossRef]
- Geng, J.; Tsakiropoulos, P.; Shao, G. A thermo-gravimetric and microstructural study of the oxidation of Nbss/Nb5Si3 based in situ composites with Sn addition. Intermetallics 2007, 15, 270–281. [Google Scholar] [CrossRef]
- Knittel, S.; Mathieu, S.; Pertobois, L.; Vilasi, M. Effect of tin addition on Nb-Si based in situ composites: Part II Oxidation behaviour. Intermetallics 2014, 47, 43–52. [Google Scholar] [CrossRef]
- Thoma, D.J.; Perepezko, J.H. A geometric analysis of solubility ranges in Laves phases. J. Alloys Compd. 1995, 224, 330–341. [Google Scholar] [CrossRef]
- Stein, F.; Palm, M.; Sauthoff, G. Structure and stability of Laves phases. Part I. Critical assesment of factors controlling Laves phase stability. Intermetallics 2004, 12, 713–720. [Google Scholar] [CrossRef]
- Stein, F.; Palm, M.; Sauthoff, G. Structure and stability of Laves phases. Part II. Structure type variations in binary and ternary systems. Intermetallics 2005, 13, 1056–1074. [Google Scholar] [CrossRef]
- Liu, C.T.; Zhu, J.H.; Brady, M.P.; McKamey, C.G.; Pike, L.M. Physical metallurgy and mechanical properties of transition metal Laves phase alloys. Intermetallics 2000, 8, 1119–1129. [Google Scholar] [CrossRef]
- Okamoto, H. Phase Diagrams for Binary Alloys: Desk Handbook; ASM International: Metals Park, OH, USA, 2000. [Google Scholar]
- Shah, D.M.; Anton, D.L. Ternary alloying of refractory intermetallics. Mater. Res. Soc. Symp. Proc. 1991, 213, 63–68. [Google Scholar] [CrossRef]
- Bardos, D.I.; Gupta, K.P.; Beck, P.A. Ternary Laves phases with transition elements and silicon. Trans. Metall. Soc. AIME 1961, 221, 1087–1095. [Google Scholar]
- Goldschmidt, H.J.; Brand, J.A. The constitution of the chromium—niobium—silicon system. J. Less-Common Met. 1961, 3, 34–43. [Google Scholar] [CrossRef]
- Hunt, C.R.; Raman, A. Alloy chemistry of σ (βU)—related phases I. Extension of μ- and occurrence of μ’- phases in the ternary systems Nb (Ta)-X-Al (X = Fe,Co,Ni,Cu,Cr,Mo). Z Metall. 1968, 59, 701–707. [Google Scholar]
- Hu, Y.; Vasiliev, A.L.; Zhang, L.; Song, K.; Aindow, M. Microstructure and phase stability in a Nb-Mo-Cr-Al-Si alloy. J. Mater. Sci. 2008, 43, 7013–7025. [Google Scholar] [CrossRef]
- Ali-Loytty, H.; Hannula, M.; Juuti, T.; Niu, Y.; Zakharov, A.A. The role of (FeCrSi)2(MoNb)-type Laves phase on the formation of Mn-rich protective oxide scale on ferritic stainless steel. Corros. Sci. 2018, 132, 214–222. [Google Scholar] [CrossRef]
- Von Kewitz, A.; Sauthoff, G. Laves phases for high temperatures—Part II: Stability and mechanical properties. Intermetallics 2002, 10, 497–510. [Google Scholar] [CrossRef]
- Anton, D.L.; Shah, D.M. High temperature evaluation of topologically close packed intermetallics. Mater. Sci. Eng. A 1992, 153, 410–415. [Google Scholar] [CrossRef]
- Kubsch, H.; Paufler, P.; Schulze, G.E.R. The mobility of grown-in dislocations in the intermetallic compound MgZn2 during prismatic slip. Phys. Stat. Sol. 1974, 25, 269–275. [Google Scholar] [CrossRef]
- Schlesinger, M.E.; Okamoto, H.; Gokhale, A.B.; Abbaschian, R. The Nb-Si (Niobium – Silicon) system. J. Phase Equilib. 1993, 14, 502–509. [Google Scholar] [CrossRef]
- Devantay, H.; Jorda, J.; Decroux, M.; Muller, J.; Flukiger, R. The physical and structural properties of superconducting A15-type Nb-Sn alloys. J. Mater. Sci. 1981, 16, 2145–2153. [Google Scholar] [CrossRef]
- Tabaru, T.; Hanada, S. High temperature strength of Nb3Al-base alloys. Intermetallics 1998, 6, 735–739. [Google Scholar] [CrossRef]
- Chen, Y.; Shang, J.; Zhang, Y. Effects of alloying element Ti on αNb5Si3 and Nb3Al from first principles. J. Phys. Condens. Matter 2007, 19, 016215. [Google Scholar] [CrossRef]
- Tafto, J.; Suenaga, M.; Welch, D. Crystal site determination of dilute alloying elements in polycrystalline Nb3Sn superconductors using a transmission electron microscope. J. Appl. Phys. 1984, 55, 4330–4333. [Google Scholar] [CrossRef]
- Papadimitriou, I.; Utton, C.; Scott, A.; Tsakiropoulos, P. Ab initio study of binary and ternary Nb3(X,Y) A15 intermetallic phases (X,Y = Al, Ge, Si, Sn). Metall. Mater. Trans. A. 2015, 46, 566–576. [Google Scholar] [CrossRef]
- Papadimitriou, I.; Utton, C.; Tsakiropoulos, P. Ab initio investigation of the intermetallics in the Nb-Sn binary system. Acta Mater. 2015, 86, 23–33. [Google Scholar] [CrossRef]
- Papadimitriou, I.; Utton, C.; Tsakiropoulos, P. Ab initio investigation of the Nb-Al system. Comput. Mater. Sci. 2015, 107, 116–121. [Google Scholar] [CrossRef]
- Papadimitriou, I.; Utton, C.; Tsakiropoulos, P. On the Nb-Ge binary system. Metall. Mater. Trans. A 2015, 6, 5526–5536. [Google Scholar] [CrossRef]
- Murugesh, L.; Rao, K.T.V.; Ritchie, R.O. Crack growth in a ductile phase toughened Nb/Nb3Al in situ intermetallic composite under monotonic and cyclic loading. Scr. Metall. 1993, 29, 1107–1112. [Google Scholar] [CrossRef]
- Clark, J.B.; Hopple, G.B.; Wright, R.W. The effect of grain size on the high temperture plastic deformation of Nb3Sn. Metall. Trans. A 1983, 14, 889–895. [Google Scholar] [CrossRef]
- Meschel, S.V.; Kleppa, O.J. Standard enthalpies of formation of some 4d transition metal silicides by high temperature direct synthesis calorimetry. J. Alloys Compd. 1998, 274, 193–200. [Google Scholar] [CrossRef]
- Zhao, J.C.; Jackson, M.R.; Peluso, L.A. Determination of the Nb-Cr-Si phase diagram using diffusion multiples. Acta Mater. 2003, 51, 6395–6405. [Google Scholar] [CrossRef]
- Geng, J.; Shao, G.; Tsakiropoulos, P. Study of three-phase equilibrium in the Nb rich corner of Nb-Si-Cr system. Intermetallics 2006, 14, 832–837. [Google Scholar] [CrossRef]
- Bewlay, B.P.; Yang, Y.; Casey, R.L.; Jackson, M.R.; Chang, Y.A. Experimental study of the liquid-solid phase equilibria at the metal rich region of the Nb-Cr-Si system. Intermetallics 2009, 17, 120–127. [Google Scholar] [CrossRef]
- Utton, C.A.; Papadimitriou, I.; Kinoshita, H.; Tsakiropoulos, P. Experimental and thermodynamic assessment of the Ge-Nb-Si ternary phase diagram. J. Alloys Compd. 2017, 717, 303–316. [Google Scholar] [CrossRef]
- Tsakiropoulos, P. On the alloying and properties of tetragonal Nb5Si3 in Nb-silicide based alloys. Materials 2018, 11, 69. [Google Scholar] [CrossRef] [PubMed]
- Tsakiropoulos, P. On the Nb silicide based alloys: Part I—the bcc Nb solid solution. J. Alloys Compd. 2017, 708, 961–971. [Google Scholar] [CrossRef]
- Xu, Z. The Effect of Sn on the Phase Stability And Oxidation Behaviour of Nb-Silicide Based Alloys. Ph.D. Thesis, University of Sheffield, Sheffield, UK, 2016. [Google Scholar]
- Li, Z.; Tsakiropoulos, P. Study of the effects of Cr and Ti additions in the microstructure of Nb-18Si-5Ge based in situ composites. Intermetallics 2012, 26, 18–25. [Google Scholar] [CrossRef]
- Li, Z.; Tsakiropoulos, P. Study of the efects of Ge addition on the microstruture of Nb-18Si in situ composites. Intermetallics 2010, 18, 1072–1078. [Google Scholar]
- Geng, J.; Tsakiropoulos, P.; Shao, G. The effects of Ti and Mo additions on the microstructure of Nb-silicide based in situ composites. Intermetallics 2006, 14, 227–235. [Google Scholar] [CrossRef]
- Geng, J.; Tsakiropoulos, P.; Shao, G. A study of the effects of Hf and Sn additions on the microstructure of Nbss/Nb5Si3 based in situ composites. Intermetallics 2007, 15, 69–76. [Google Scholar] [CrossRef]
- Zacharis, E.; Tsakiropoulos, P.; University of Sheffield, Sheffield, UK. Unpublished work. 2011.
- Bywater, G. Oxidation of Nb-Silicide Based Alloys with Laves Phase. Ph.D. Thesis, University of Sheffield, Sheffield, UK, 2017. [Google Scholar]
- Nelson, J. Study of the Effects of Cr, Hf and Sn with Refractory Metal Additions on the Microstrucrure and Properties of Nb-Silicide Based Alloys. Ph.D. Thesis, University of Sheffield, Sheffield, UK, 2015. [Google Scholar]
- Zhao, J. The Role of Refractory Metals in Controlling Properties of Nb-Silicide Based in Situ Composites. Ph.D. Thesis, University of Sheffield, Sheffield, UK, 2017. [Google Scholar]
- Vellios, N.; Tsakiropoulos, P. The role of Fe and Ti additions in the microstructure of Nb-18Si-5Sn silicide based alloys. Intermetallics 2007, 15, 1529–1537. [Google Scholar] [CrossRef]
- Anazodo, B.; Tsakiropoulos, P.; University of Sheffield, Sheffield, UK. Unpublished work. 2014.
- Mizutani, U. Hume-Rothery Rules for Structurally Complex Alloy Phases; CRS Press: Boca Raton, FL, USA, 2011. [Google Scholar]
- Bewlay, B.P.; Braint, C.L.; Sylven, E.T.; Jackson, M.R.; Xiao, G. Creep studies of monolithic phases in Nb-silicide based in situ composites. Mater. Res. Soc. Symp. Proc. 2001. [Google Scholar] [CrossRef]
- Geng, J.; Tsakiropoulos, P. A study of the microstructure and oxidation of Nb-Si-Cr-Al-Mo in situ composites alloyed with Ti, Hf and Sn. Intermetallics 2007, 15, 382–395. [Google Scholar] [CrossRef]
- Jhi, S.-H.; Ihm, J.; Louie, S.G.; Cohen, M.L. Electronic mechanism of hardness enhancement in transition metal carbo-nitrides. Nature 1999, 399, 132–134. [Google Scholar] [CrossRef]
- Wang, J.; Zhou, Y. Dependence of elastic stiffness on electronic band structure of nano-laminate M2AlC (M = Ti, V, Nb and Cr) ceramics. Phys. Rev. B 2004, 69, 21411. [Google Scholar] [CrossRef]
- Konig, U. Deposition and properties of multicomponent hard coatings. Surf. Coat. Technol. 1987, 33, 91–103. [Google Scholar] [CrossRef]
- Shyue, J. The Effects of Alloying on the Crystal Structure and Plastic Deformation of the Intermetallic Compound Nb3Al. Ph.D. Thesis, The Ohio State University, Columbus, OH, USA, 1992. [Google Scholar]
- Kamimura, Y.; Edagawa, K.; Takeuchi, S. Experimental evaluation of the Peierls stresses in a variety of crystals and their relation to the crystal structure. Acta Mater. 2013, 61, 294–309. [Google Scholar] [CrossRef]
- Pauling, L. The Nature of the Chemical Bond, 3rd ed.; Cornell University Press: Ithaca, NY, USA, 1960. [Google Scholar]
- Li, K.; Wang, X.; Zhang, F.; Xue, D. Electonegativity identification of novel superhard materials. Phys. Rev. Lett. 2008, 100, 235504. [Google Scholar] [CrossRef] [PubMed]
- Passa, E. Study of the Microstructure of Nb3Al Based Alloys. Ph.D. Thesis, University of Surrey, Guildford, UK, 1996. [Google Scholar]
- Chen, X.-Q.; Niu, H.; Li, D.; Li, Y. Modelling hardness of polycrystaline materials and bulk metallic glasses. Intermetallics 2011, 19, 1275–1281. [Google Scholar] [CrossRef]
Phase | HV* | HV+ | HVC | HVmeasured |
---|---|---|---|---|
Nb3Sn | 760 | 469 | 1002 | 450 |
Nb3Al | 708 | 427 | 949 | 726 |
© 2018 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tsakiropoulos, P. Alloying and Properties of C14–NbCr2 and A15–Nb3X (X = Al, Ge, Si, Sn) in Nb–Silicide-Based Alloys. Materials 2018, 11, 395. https://doi.org/10.3390/ma11030395
Tsakiropoulos P. Alloying and Properties of C14–NbCr2 and A15–Nb3X (X = Al, Ge, Si, Sn) in Nb–Silicide-Based Alloys. Materials. 2018; 11(3):395. https://doi.org/10.3390/ma11030395
Chicago/Turabian StyleTsakiropoulos, Panos. 2018. "Alloying and Properties of C14–NbCr2 and A15–Nb3X (X = Al, Ge, Si, Sn) in Nb–Silicide-Based Alloys" Materials 11, no. 3: 395. https://doi.org/10.3390/ma11030395
APA StyleTsakiropoulos, P. (2018). Alloying and Properties of C14–NbCr2 and A15–Nb3X (X = Al, Ge, Si, Sn) in Nb–Silicide-Based Alloys. Materials, 11(3), 395. https://doi.org/10.3390/ma11030395