A Novel Approach for Evaluating the Contraction of Hypo-Peritectic Steels during Initial Solidification by Surface Roughness
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Confocal Scanning Laser Microscope (CSLM)
3. Result and Discussion
3.1. Solidification Characteristics
3.2. Initial Solidification Process of Steels during Cooling
3.2.1. Hypo-Peritectic Steel
3.2.2. Ultra-Low Carbon Steel
3.2.3. High Carbon Steel
3.3. Measurement of Surface Roughness
3.3.1. Measurement Regions
3.3.2. Surface Roughness
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Suzuki, M.; Yamaoka, Y. Influence of carbon content on solidifying shell growth of carbon steels at the initial stage of solidification. Mater. Trans. 2003, 44, 836–844. [Google Scholar] [CrossRef]
- Du, F.; Wang, X.; Yu, G.; Yan, Z.; Zhu, X.; Xu, J. Study on the non-uniform slab shrinkage of special steel during slab continuous casting. Ironmak. Steelmak. 2017, 41, 1–6. [Google Scholar] [CrossRef]
- Thomas, B.G.; Zhu, H. Thermal Distortion of solidifying shell near meniscus in continuous casting of steel. In Proceedings of the JIM/TMS Solidification Science and Processing Conference, Honolulu, HI, USA, 13–15 December 1995; pp. 197–208. [Google Scholar]
- Griesser, S.; Reid, M.; Bernhard, C.; Dippenaar, R. Diffusional constrained crystal nucleation during peritectic phase transitions. Acta Mater. 2014, 67, 335–341. [Google Scholar] [CrossRef]
- Emi, T.; Fredriksson, H. High-speed continuous casting of peritectic carbon steels. Mater. Sci. Eng. 2005, 413–414, 2–9. [Google Scholar] [CrossRef]
- Suzuki, M.; Chong Hee, Y.; Sato, H.; Tsui, Y.; Shibata, H.; Emi, T. Origin of Heat Transfer Anomaly and Solidifying Shell Deformation of Peritectic Steels in Continuous Casting. Trans. Iron Steel Inst. Jpn. 2007, 36, 171–174. [Google Scholar] [CrossRef]
- Xia, G.; Bernhard, C.; Ilie, S.; Fuerst, C. A Study about the Influence of Carbon Content in the Steel on the Casting Behavior. Steel Res. Int. 2011, 82, 230–236. [Google Scholar] [CrossRef]
- Vdovin, K.N.; Zlov, V.E.; Suspitsin, V.G. Deformation of the skin of a continuous-cast slab in the mold of the caster. Metallurgist 2009, 53, 572–576. [Google Scholar] [CrossRef]
- Moon, S.C. The Peritectic Phase Transition and Continuous Casting Practice. Ph.D. Thesis, University of Wollongong, Wollongong, Australia, March 2015. [Google Scholar]
- Hechu, K.; Slater, C.; Santillana, B.; Samuel, C.; Sridhar, S. A novel approach for interpreting the solidification behaviour of peritectic steels by combining CSLM and DSC. Mater. Charact. 2017, 133, 25–32. [Google Scholar] [CrossRef]
- Nishimura, T.; Morishita, K.; Nagira, T.; Yoshiya, M.; Yasuda, H. Kinetics of the δ/γ interface in the massive-like transformation in Fe-0.3C-0.6Mn-0.3Si alloys. IOP Conf. Ser. Mater. Sci. Eng. 2015, 84, 012062. [Google Scholar] [CrossRef]
- Kerr, H.W.; Cisse, J.; Bolling, G.F. On equilibrium and non-equilibrium peritectic transformations. Acta Metall. 1974, 22, 677–686. [Google Scholar] [CrossRef]
- Harste, K.; Schwerdtfeger, K. Shrinkage of Round Iron-Carbon Ingots during Solidification and Subsequent Cooling. ISIJ Int. 2007, 43, 1011–1020. [Google Scholar] [CrossRef]
- Bale, C.W.; Chartrand, P.; Degterov, S.A.; Eriksson, G.; Hack, K.; Mahfand, R.B.; Pelton, A.D.; Petersen, S. FactSage thermochemical software and databases. Calphad J. 2002, 62, 189–228. [Google Scholar] [CrossRef]
- Andersson, J.O.; Helander, T.; Hoglund, L.; Shi, P.F.; Sundman, B. Thermo-Calc and DICTRA, computational tools for materials science. Calphad J. 2002, 26, 273–312. [Google Scholar] [CrossRef]
- Wielgosz, E.; Kargul, T. Differential scanning calorimetry study of peritectic steel grades. J. Therm. Anal. Calorim. 2015, 119, 1547–1553. [Google Scholar] [CrossRef]
- Presoly, P.; Pierer, R.; Bernhard, C. Identification of Defect Prone Peritectic Steel Grades by Analyzing High-Temperature Phase Transformations. Metall. Mater. Trans. A 2013, 44, 5377–5388. [Google Scholar] [CrossRef]
- Mondragón, J.J.R.; Trejo, M.H.; Román, M.H.; Manuel, D.J.C. Description of the Hypo-peritectic Steel Solidification under Continuous Cooling and Crack Susceptibility. ISIJ Int. 2008, 48, 454–460. [Google Scholar] [CrossRef]
- Shibata, H.; Arai, Y.; Suzuki, M.; Emi, T. Kinetics of peritectic reaction and transformation in Fe-C alloys. Metall. Mater. Trans. B 2000, 31, 981–991. [Google Scholar] [CrossRef]
- Reid, M.; Phelan, D.; Dippenaar, R. Concentrick solidification for high temperature laser scanning confocal microscopy. ISIJ Int. 2004, 44, 565–572. [Google Scholar] [CrossRef]
- Phelan, D.; Reid, M.; Dippenaar, R. Kinetics of the peritectic phase transformation: In-situ, measurements and phase field modeling. Metall. Mater. Trans. A 2006, 37, 985–994. [Google Scholar] [CrossRef]
- Dippenaar, R. In-situ analysis of the peritectic phase transition-relevant to the continuous casting of steel. In Proceedings of the 5th International Congress on the Science and Technology of the Steelmaking, Dresden, Germany, 1–3 October 2012; pp. 1–9. [Google Scholar]
- Griesser, S.; Bernhard, C.; Dippenaar, R. Effect of nucleation undercooling on the kinetics and mechanism of the peritectic phase transition in steel. Acta Mater. 2014, 81, 111–120. [Google Scholar] [CrossRef]
- Hanao, M.; Kawamoto, M. Flux Film in the Mold of High Speed Continuous Casting. ISIJ Int. 2008, 48, 180–185. [Google Scholar] [CrossRef]
- Park, J.K.; Thomas, B.G.; Samarasekera, I.V. Analysis of thermomechanical behavior in billet casting with different mould corner radii. Ironmak. Steelmak. 2002, 29, 359–375. [Google Scholar] [CrossRef]
- Li, C.H.; Thomas, B.G. Thermomechanical finite-element model of shell behavior in continuous casting of steel. Metall. Mater. Trans. B 2004, 35, 1151–1172. [Google Scholar] [CrossRef]
- Meng, Y.; Thomas, B.G. Heat-transfer and solidification model of continuous slab casting: CON1D. Metall. Mater. Trans. B 2003, 34, 685–705. [Google Scholar] [CrossRef]
- Koric, S.; Thomas, B.G.; Voller, V.R. Enhanced latent heat method to incorporate superheat effects into fixed-grid multiphysics simulations. Numer. Heat Transf. Part B 2010, 57, 396–413. [Google Scholar] [CrossRef]
- Koric, S.; Hibbeler, L.C.; Liu, R.; Thomas, B.G. Multiphysics model of metal solidification on the continuum level. Numer. Heat Transf. Part B 2010, 58, 371–392. [Google Scholar] [CrossRef]
- Palumbo, G.; Piccininni, A.; Piglionico, V.; Guglielmi, P.; Sorgente, D.; Tricarico, L. Modelling residual stresses in sand-cast superduplex stainless steel. J. Mater. Process. Technol. 2015, 217, 253–261. [Google Scholar] [CrossRef]
- Mizukami, H.; Yamanaka, A.; Watanabe, T. High Temperature Deformation Behavior of Peritectic Carbon Steel during Solidification. Trans. Iron Steel Inst. Jpn. 2002, 42, 964–973. [Google Scholar] [CrossRef]
- Bernhard, C.; Xia, G. Influence of alloying elements on the thermal contraction of peritectic steels during initial solidification. Ironmak. Steelmak. 2006, 33, 52–56. [Google Scholar] [CrossRef]
- Chen, G.; Shen, H.; Hu, S.; Baudelet, B. Roughening of the free surfaces of metallic sheets during stretch forming. Mater. Sci. Eng. A 1990, 128, 33–38. [Google Scholar]
- Mahmudi, R.; Mehdizadeh, M. Surface roughening during uniaxial and equi-biaxial stretching of 70–30 brass sheets. J. Mater. Process. Technol. 1998, 80–81, 707–712. [Google Scholar] [CrossRef]
- Becker, R. Effects of strain localization on surface roughening during sheet forming. Acta Mater. 1998, 46, 1385–1401. [Google Scholar] [CrossRef]
- YONEKURA MFG, HT-CSLM, Confocal Scanning Laser Microscope. Available online: http://yonekuramfg.wixsite.com/ht-cslm/untitled-cv4z (accessed on 30 January 2018).
- Leach, R.K. Optical Measurement of Surface Topography; Springer-Verlag: Berlin/Heidelberg, Germany, 2011; pp. 238–241. [Google Scholar]
- Dippenaar, R.; Moon, S.C.; Szekeres, E.S. Strand surface cracks—The role of abnormally large prior-austenite grains. Iron Steel Technol. 2007, 7, 105–115. [Google Scholar]
- Murakami, H.; Suzuki, M.; Kitagawa, T.; Miyahara, S. Control of Uneven Solidified Shell Formation of Hypo-peritectic Carbon Steels in Continuous Casting Mold. Tetsu-to-Hagane 1992, 78, 105–112. [Google Scholar] [CrossRef]
- Cao, L.F.; Guang, X.; Peng, D.; Wang, G.X.; Hu, D.J. Study on thermal expansion properties of steels. J. Univ. Sci. Technol. Beijing 2014, 36, 639–643. [Google Scholar]
- Tian, S. Physical Properties of Materials, 1st ed.; Beihang University Press: Beijing, China, 2004; p. 240. [Google Scholar]
Steel | Chemical Composition (mass %) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
C | Si | Mn | S | P | Al | Ni | Ti | Cr | Fe | |
S1 | 0.102 | 0.211 | 1.22 | 0.001 | 0.011 | 0.039 | 0.120 | 0.017 | 0.179 | bal. |
S2 | 0.002 | 0.01 | 0.40 | 0.002 | 0.010 | 0.023 | - | 0.011 | - | bal. |
S3 | 0.54 | 0.151 | 0.51 | 0.010 | 0.015 | 0.021 | 0.101 | 0.014 | 0.151 | bal. |
Steel Samples/Temperature (°C) | S1 | S2 | S3 | |
---|---|---|---|---|
Equilibrium | δ nucleation | 1518 | 1535 | 1486 |
δ→γ transform | 1487–1451 | 1393–1387 | — | |
Actual (−20 °C/s) | δ nucleation | 1462.5 | 1488.3 | 1338.5 |
δ→γ transform | 1328.5 | 1308.9–1303.1 | — |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, J.; Wen, G.; Pu, D.; Tang, P. A Novel Approach for Evaluating the Contraction of Hypo-Peritectic Steels during Initial Solidification by Surface Roughness. Materials 2018, 11, 571. https://doi.org/10.3390/ma11040571
Guo J, Wen G, Pu D, Tang P. A Novel Approach for Evaluating the Contraction of Hypo-Peritectic Steels during Initial Solidification by Surface Roughness. Materials. 2018; 11(4):571. https://doi.org/10.3390/ma11040571
Chicago/Turabian StyleGuo, Junli, Guanghua Wen, Dazhi Pu, and Ping Tang. 2018. "A Novel Approach for Evaluating the Contraction of Hypo-Peritectic Steels during Initial Solidification by Surface Roughness" Materials 11, no. 4: 571. https://doi.org/10.3390/ma11040571
APA StyleGuo, J., Wen, G., Pu, D., & Tang, P. (2018). A Novel Approach for Evaluating the Contraction of Hypo-Peritectic Steels during Initial Solidification by Surface Roughness. Materials, 11(4), 571. https://doi.org/10.3390/ma11040571