Antibacterial Effects of Magnetically-Controlled Ag/Fe3O4 Nanoparticles
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental System and Mechanism
2.2. Preparation of Ag/Fe3O4 NPs
2.3. Characterization of Ag/Fe3O4 NPs
2.4. Antibacterial Effects of Ag/Fe3O4 NPs
2.5. Statistical Analysis
3. Results and Discussion
4. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Hwang, M.G.; Katayama, H.; Ohgaki, S. Inactivation of Legionella pneumophila and Pseudomonas aeruginosa: Evaluation of the bactericidal ability of silver cations. Water Res. 2007, 41, 4097–4104. [Google Scholar] [CrossRef] [PubMed]
- Silvestry-Rodriguez, N.; Bright, K.R.; Uhlmann, D.R.; Slack, D.C.; Gerba, C.P. Inactivation of Pseudomonas aeruginosa and Aeromonas hydrophila by silver in tap water. J. Environ. Sci. Health. Part A 2007, 42, 1579–1584. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H. Application of Silver Nanoparticles in Drinking Water Purification. Ph.D. Thesis, University of Rhode Island, Kingston, RI, USA, 2013. [Google Scholar]
- Chang, Y.S.; Savitha, S.; Sadhasivam, S.; Hsu, C.K.; Lin, F.H. Fabrication, characterization and application of greigite nanoparticles for cancer hyperthermia. J. Colloid Interface Sci. 2011, 363, 314–319. [Google Scholar] [CrossRef] [PubMed]
- Chang, M.; Lin, Y.H.; Gabayno, J.L.; Li, Q.; Liu, X. Thrombolysis based on magnetically-controlled surface-functionalized Fe3O4 nanoparticle. Bioengineered 2017, 8, 29–35. [Google Scholar] [CrossRef] [PubMed]
- Wan, J.; Cai, W.; Meng, X.; Liu, E. Monodisperse water-soluble magnetite nanoparticles prepared by polyol process for high-performance magnetic resonance imaging. Chem. Commun. 2007, 47, 5004–5006. [Google Scholar] [CrossRef] [PubMed]
- Tan, H.; Xue, J.M.; Shuter, B.; Li, X.; Wang, J. Synthesis of PEOlated Fe3O4@SiO2 nanoparticles via bioinspired silification for magnetic resonance imaging. Adv. Funct. Mater. 2010, 20, 722–731. [Google Scholar] [CrossRef]
- Prucek, R.; Tucek, J.; Kilianova, M.; Panacek, A.; Kvitek, L.; Filip, J.; Kolar, M.; Tomankova, K.; Zboril, R. The targeted antibacterial and antifungal properties of magnetic nanocomposite of iron oxide and silver nanoparticles. Biomaterials 2011, 32, 4704–4713. [Google Scholar] [CrossRef] [PubMed]
- He, Q.; Huang, C.; Liu, J. Preparation, characterization and antibacterial activity of Magnetic greigite and Fe3S4/Ag nanoparticles. Nanosci. Nanotechnol. Lett. 2014, 6, 10–17. [Google Scholar] [CrossRef]
- Sun, W.Z.; Li, Q.; Gao, S.; Shang, J.K. Monometallic Pd/Fe3O4 catalyst for denitrification of water. Appl. Catal. B-Environ. 2012, 125, 1–9. [Google Scholar] [CrossRef]
- Lin, F.H.; Doong, R.A. Bifunctional Au-Fe3O4 heterostructures for magnetically recyclable catalysis of nitrophenol reduction. J. Phys. Chem. C 2011, 115, 6591–6598. [Google Scholar] [CrossRef]
- Amarjargal, A.; Tijing, L.D.; Im, I.T.; Kim, C.S. Simultaneous preparation of Ag/Fe3O4 core–shell nanocomposites with enhanced magnetic moment and strong antibacterial and catalytic properties. Chem. Eng. J. 2013, 226, 243–254. [Google Scholar] [CrossRef]
- Li, W.H.; Yang, N. Green and facile synthesis of Ag-Fe3O4 nanocomposites using the aqueous extract of Crataegus pinnatifida leaves and their antibacterial performance. Mater. Lett. 2016, 162, 157–160. [Google Scholar] [CrossRef]
- Ghaseminezhad, S.M.; Shojaosadati, S.A. Evaluation of the antibacterial activity of Ag/Fe3O4 nanocomposites synthesized using starch. Carbohyd. Polym. 2016, 144, 454–463. [Google Scholar] [CrossRef] [PubMed]
- Gabayno, J.L.; Liu, D.-W.; Chang, M.; Lin, Y.-H. Controlled manipulation of Fe3O4 nanoparticles in an oscillating magnetic field for fast ablation of microchannel occlusion. Nanoscale 2015, 7, 3947–3953. [Google Scholar] [CrossRef] [PubMed]
- Chang, M.; Chang, M.Y.; Lin, W.S.; Gabayno, J.L. Magnetic control of Fe3O4 nanomaterial for fat ablation in microchannel. Materials 2015, 11, 7813–7820. [Google Scholar] [CrossRef] [PubMed]
- Lin, H.L.; Lin, C.C.; Lin, Y.J.; Lin, H.C.; Shih, C.M.; Chen, C.R.; Huang, R.N.; Kuo, T.C. Revisiting with a relative-density calibration approach the determination of growth rates of microorganisms by use of optical density data from liquid cultures. Appl. Environ. Microbiol. 2010, 76, 1683–1685. [Google Scholar] [CrossRef] [PubMed]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chang, M.; Lin, W.-S.; Xiao, W.; Chen, Y.-N. Antibacterial Effects of Magnetically-Controlled Ag/Fe3O4 Nanoparticles. Materials 2018, 11, 659. https://doi.org/10.3390/ma11050659
Chang M, Lin W-S, Xiao W, Chen Y-N. Antibacterial Effects of Magnetically-Controlled Ag/Fe3O4 Nanoparticles. Materials. 2018; 11(5):659. https://doi.org/10.3390/ma11050659
Chicago/Turabian StyleChang, Ming, Wei-Siou Lin, Weihao Xiao, and Yi-Ning Chen. 2018. "Antibacterial Effects of Magnetically-Controlled Ag/Fe3O4 Nanoparticles" Materials 11, no. 5: 659. https://doi.org/10.3390/ma11050659
APA StyleChang, M., Lin, W. -S., Xiao, W., & Chen, Y. -N. (2018). Antibacterial Effects of Magnetically-Controlled Ag/Fe3O4 Nanoparticles. Materials, 11(5), 659. https://doi.org/10.3390/ma11050659