Performance Evaluation and Improving Mechanisms of Diatomite-Modified Asphalt Mixture
Abstract
:1. Introduction
2. Materials
3. Experimental Methods
3.1. Characteristic Methods for Diatomite and Asphalt Binder
3.2. Performance Evaluation of Mixtures
3.2.1. Preparation of Asphalt Mixture
3.2.2. Low-Temperature Performance
3.2.3. High-Temperature Performance
3.2.4. Fatigue Performance
3.2.5. Water Stability
4. Results and Discussion
4.1. Characteristics of Diatomite and Binder
4.1.1. Mineralogical Properties of Diatomite and Limestone Powder
4.1.2. Particle Size Distribution of Diatomite
4.1.3. Mesoporous Distribution of Diatomite
4.1.4. SEM Results of Diatomite
4.1.5. FTIR Test Results
4.2. Performance of Asphalt Mixtures
4.2.1. Results of the Three-Point Bending Test
4.2.2. Results of the Rutting Test
4.2.3. Results of the Four-Point Bending Test
4.2.4. Results of Marshall Stability and Indirect Tensile Strength Test
5. Conclusions
- (1)
- The group OH– was contained in diatomite. It is an essential reason for the surface activity and absorptivity of diatomite. The porous structure of diatomite improves its adhesion and wet ability with asphalt. Small particle size, numerous mesopores, and large specific surface area enhance its adsordability for the light components of asphalt. The characteristics of diatomite contribute to its strong physical connection with asphalt. They provide a possible reason for its enhancement of asphalt mixture performance.
- (2)
- The addition of diatomite resulted in an increase in the high-temperature performance of the asphalt mixture but resulted in little improvement of the low-temperature performance. Therefore, in terms of its practical engineering application, diatomite-modified asphalt mixture is not suitable for application in the upper layer of asphalt pavement in cold areas.
- (3)
- Although it did not perform as well as the SBS-modified asphalt mixture, the asphalt mixture with diatomite showed better fatigue performance and water stability than the base asphalt mixture. In addition, due to its low cost and simple modification process, the economic benefits of the diatomite-modified asphalt mixture have great advantages compared with the traditional modified asphalt mixture.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Xie, J.; Wu, S.; Lin, J.; Cai, J.; Chen, Z.; Wei, W. Recycling of basic oxygen furnace slag in asphalt mixture: Material characterization & moisture damage investigation. Constr. Build. Mater. 2012, 36, 467–474. [Google Scholar]
- Chen, Z.; Wu, S.; Pang, L.; Xie, J. Function investigation of stone mastic asphalt (SMA) mixture partly containing basic oxygen furnace (BOF) slag. J. Appl. Biomater. Funct. Mater. 2016, 14 (Suppl. 1), e68–e72. [Google Scholar] [CrossRef] [PubMed]
- Long, Y.; Wu, S.; Xiao, Y.; Cui, P.; Zhou, H. VOCs reduction and inhibition mechanisms of using active carbon filler in bituminous materials. J. Clean. Prod. 2018, 181, 784–793. [Google Scholar] [CrossRef]
- Arabani, M.; Tahami, S.A. Assessment of mechanical properties of rice husk ash modified asphalt mixture. Constr. Build. Mater. 2017, 149, 350–358. [Google Scholar] [CrossRef]
- Pang, L.; Liu, K.; Wu, S.; Lei, M.; Chen, Z. Effect of LDHs on the aging resistance of crumb rubber modified asphalt. Constr. Build. Mater. 2014, 67, 239–243. [Google Scholar] [CrossRef]
- Bao, Y.N. Study of Asphalt Mixture Modified by Diatomite. Master’s Thesis, Chang’an University, Xi’an, China, 2005. [Google Scholar]
- Modarres, A. Investigating the toughness and fatigue behavior of conventional and SBS modified asphalt mixes. Constr. Build. Mater. 2013, 47, 218–222. [Google Scholar] [CrossRef]
- Baghaee Moghaddam, T.; Soltani, M.; Karim, M.R. Evaluation of permanent deformation characteristics of unmodified and Polyethylene Terephthalate modified asphalt mixtures using dynamic creep test. Mater. Des. 2014, 53, 317–324. [Google Scholar] [CrossRef]
- Wulandari, P.S.; Tjandra, D. Use of Crumb Rubber as an Additive in Asphalt Concrete Mixture. Procedia Eng. 2017, 171, 1384–1389. [Google Scholar] [CrossRef]
- Iskender, E. Evaluation of mechanical properties of nano-clay modified asphalt mixtures. Measurement 2016, 93, 359–371. [Google Scholar] [CrossRef]
- Guo, Q.; Li, L.; Cheng, Y.; Jiao, Y.; Xu, C. Laboratory evaluation on performance of diatomite and glass fiber compound modified asphalt mixture. Mater. Des. (1980–2015) 2015, 66, 51–59. [Google Scholar] [CrossRef]
- Cong, P.; Chen, S.; Chen, H. Effects of diatomite on the properties of asphalt binder. Constr. Build. Mater. 2012, 30, 495–499. [Google Scholar] [CrossRef]
- Sun, Y.S.; Chen, X.L.; Han, Y.X.; Zhang, B. Research on Performance of the Modified Asphalt by Diatomite-Cellulose Composite. Adv. Mater. Res. 2010, 158, 211–218. [Google Scholar] [CrossRef]
- Jiang, L.; Liu, Q.L. Application of Diatomite Modified Asphalt. Appl. Mec. Mater. 2013, 477–478, 959–963. [Google Scholar] [CrossRef]
- Baldi-Sevilla, A.; Montero, M.L.; Aguiar, J.P.; Loría, L.G. Influence of nanosilica and diatomite on the physicochemical and mechanical properties of binder at unaged and oxidized conditions. Constr. Build. Mater. 2016, 127, 176–182. [Google Scholar] [CrossRef]
- Zhang, Y.B.; Zhu, H.Z.; Wang, G.A.; Chen, T.J. Evaluation of Low Temperature Performance for Diatomite Modified Asphalt Mixture. Adv. Mater. Rer. 2011, 413, 246–251. [Google Scholar] [CrossRef]
- Tan, Y.; Zhang, L.; Zhang, X. Investigation of low-temperature properties of diatomite-modified asphalt mixtures. Constr. Build. Mater. 2012, 36, 787–795. [Google Scholar]
- Chen, Y.Z.; Li, Z.X. High Temperature Stability of Modified Asphalt Concrete. Appl. Mec. Mater. 2013, 438–439, 391–394. [Google Scholar] [CrossRef]
- Wei, H.; He, Q.; Jiao, Y.; Chen, J.; Hu, M. Evaluation of anti-icing performance for crumb rubber and diatomite compound modified asphalt mixture. Constr. Build. Mater. 2016, 107, 109–116. [Google Scholar] [CrossRef]
- Chen, W.F.; Gao, P.W.; Li, X.Y.; Le, J.; Jin, S. Effect of the New Type Diatomite Modifier on the Pavement Performance of Asphalt Mixture. J. Mater. Sci. Eng. 2007, 25, 578–581. [Google Scholar]
- Bao, Y.N.; Jiang, X.H. Study on Laboratory Test of Road-performance of Diatomite-asphalt Mixture. Highway Eng. 2010, 35, 018. [Google Scholar]
- Zhou, Z. Experimental Study on Mix Design of Diatomite Modified Asphalt Mixture. Master’s Thesis, Jilin University, Changchun, China, 2008. [Google Scholar]
- Yin, H.Y. Research on the Modification Mechanism of Diatomite and Dry Mixing of Diatomite-modified Asphalt Miture. Master’s Thesis, Chongqing Jiaotong University, Chongqing, China, 2012. [Google Scholar]
- Standard Test Methods of Asphalt and Asphalt Mixtures for Highway Engineering; Ministry of Transport: Beijing, China, 2011.
- Ge, Z.S.; Huang, X.M.; Xu, G.G. Evaluation of asphalt-mixture’s low-temperature anti-cracking performance by curvature strain energy method. J. Southeast Univ. (Nat. Sci. Ed.) 2002, 32, 653–655. [Google Scholar]
- Xu, S.C. A study on the Specific Property and the Development of Diatomite. J. Fuyang Teach. Coll. 2002, 17, 29–31. [Google Scholar]
- Li, Z.S. A Study on The Performance of Diatomite Modified Asphalt Mixture. Master’s Thesis, Jilin University, Changchun, China, 2008. [Google Scholar]
- Van Garderen, N.; Clemens, F.J.; Kaufmann, J.; Urbanek, M.; Binkowski, M.; Graule, T.; Aneziris, C.G. Pore analyses of highly porous diatomite and clay based materials for fluidized bed reactors. Microporous Mesoporous Mater. 2012, 151, 255–263. [Google Scholar] [CrossRef]
- Zhang, Z.Q.; Zhang, D.L.; Yuan, J.A. The Influence of the Molecular Weight and the State Transition Characteristic on the Performance of Asphalt. J. Xi′an Highway Univ. 1998, 18, 207–211. [Google Scholar]
- Wang, J.L.; Han, T. Study on temperature performance of diatomite modified asphalt mixture in Panxi, Sichuan. Commun. Sci. Technol. Heilongjiang 2014, 11, 26–28. [Google Scholar]
- Zhang, X.K. Influence of Diatomite Material on Properties of Asphalt Mixture. Master’s Thesis, Chongqing Jiaotong University, Chongqing, China, 2008. [Google Scholar]
- Wang, Y.N. Study on Performance of Diatomite-Modified Asphalt Mixture. Master’s Thesis, Jilin University, Changchun, China, 2007. [Google Scholar]
Indexes | Measured Values | Specification |
---|---|---|
Specific gravity | 1.034 | N/A |
Penetration at 25 °C (0.1 mm) | 63 | 60–80 |
Ductility, 5 cm/min, 15 °C (cm) | >150 | ≥100 |
Softening point (°C) | 48 | ≥46 |
Apparent viscosity, 135 °C (Pa·s) | 0.48 | ≤1.5 |
Loss on heating (%) | +0.09 | ≤±0.8 |
Indexes | Measured Values | Specification | |
---|---|---|---|
EZ | IM | ||
Specific gravity | 1.032 | 1.039 | N/A |
Penetration at 25 °C (0.1 mm) | 55 | 68 | 30–80 |
Ductility, 5 cm/min, 5 °C (cm) | 56 | 49 | ≥30 |
Softening point (°C) | 69 | 52 | ≥50 |
Apparent viscosity, 135 °C (Pa·s) | 0.95 | 1.23 | ≤3 |
Loss on heating (%) | +0.32 | +0.56 | ≤±1 |
Indexes | Diatomite | Limestone Powder |
---|---|---|
Color | light yellow | white |
Apparent density (g/cm3) | 2.18 | 2.67 |
Water content (%) | 1.81 | 0.55 |
Specific surface area (m2/g) | 29.35 | 1.47 |
Hydrophilic coefficient | 0.5 | 0.6 |
Compound | SiO2 | CaO | Al2O3 | Fe2O3 | K2O | MgO | TiO2 | Loss | Others | |
---|---|---|---|---|---|---|---|---|---|---|
Content (wt %) | Diatomite | 62.21 | 0.36 | 12.07 | 4.52 | 1.53 | 1.10 | 0.70 | 15.89 | 1.62 |
Limestone powder | 1.79 | 55.46 | 0.18 | 0.09 | - | 0.52 | - | 41.72 | 0.24 |
Mixtures Types | Flexural Strength (MPa) | Tensile Strain (με) | Bending Stiffness Modulus (MPa) |
---|---|---|---|
EZ-SBS-modified | 10.127 | 2077.16 | 4996.93 |
IM-SBS-modified | 10.481 | 1576.36 | 7229.83 |
Diatomite-modified | 8.411 | 1352.72 | 6570.01 |
Base | 7.910 | 1130.84 | 7333.69 |
Mixtures Types | 45 min d1 (mm) | 60 min d2 (mm) | Dynamic Stability (times/mm) |
---|---|---|---|
EZ-SBS-modified | 1.229 | 1.295 | 9545 |
IM-SBS-modified | 2.477 | 2.681 | 3088 |
Diatomite-modified | 1.574 | 1.686 | 5625 |
Base | 3.144 | 3.527 | 1645 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, C.; Xie, J.; Zhou, X.; Liu, Q.; Pang, L. Performance Evaluation and Improving Mechanisms of Diatomite-Modified Asphalt Mixture. Materials 2018, 11, 686. https://doi.org/10.3390/ma11050686
Yang C, Xie J, Zhou X, Liu Q, Pang L. Performance Evaluation and Improving Mechanisms of Diatomite-Modified Asphalt Mixture. Materials. 2018; 11(5):686. https://doi.org/10.3390/ma11050686
Chicago/Turabian StyleYang, Chao, Jun Xie, Xiaojun Zhou, Quantao Liu, and Ling Pang. 2018. "Performance Evaluation and Improving Mechanisms of Diatomite-Modified Asphalt Mixture" Materials 11, no. 5: 686. https://doi.org/10.3390/ma11050686
APA StyleYang, C., Xie, J., Zhou, X., Liu, Q., & Pang, L. (2018). Performance Evaluation and Improving Mechanisms of Diatomite-Modified Asphalt Mixture. Materials, 11(5), 686. https://doi.org/10.3390/ma11050686