Standard Reference Materials for Cement Paste: Part II-Determination of Mixing Ratios
Abstract
:1. Introduction
2. Experimental Design and Methods
2.1. Experimental Design
2.2. Experimental Methods
3. Analysis of the Proposed Mixing Ratios
3.1. Rheological Analysis of the Cement Paste
3.2. Developed Standard Reference Materials
3.3. Factors Influencing the Rheological Properties of Each SRM Component
3.3.1. Analysis of the Yield Stress
3.3.2. Analysis of Plastic Viscosity
3.3.3. Proposal of Mixing Ratios
3.3.4. Review of the SRM Requirements According to the Mixing Ratio
4. Validation of Suggested Mixing Ratio for SRM
5. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Song, J.T.; Choi, H.Y. Rheological Properties of Cement Pastes Containing Metakaoline. J. Korea Ceram. Soc. 2003, 40, 1229–1234. [Google Scholar]
- Hwang, S.Y.; Lee, H.K.; Kang, B.H. A Study on the Applicability of High-Workable Concrete in Field. J. Korea Soc. Civ. Eng. 1998, 14, 71–78. [Google Scholar]
- Han, C.G.; Lee, G.C.; Heo, Y.S. A Comparison Study between Evaluation Method on the Rheological Properties of Cement Paste. J. Korea Inst. Build. Constr. 2006, 21, 75–82. [Google Scholar] [CrossRef]
- Choi, M.S.; Kim, Y.J.; Jang, K.P.; Kwoon, S.H. Effect of the coarse aggregate size on pipe flow of pumped concrete. J. Constr. Build. Mater. 2014, 66, 723–730. [Google Scholar] [CrossRef]
- Wang, H.J. Effect of coarse aggregate characteristics on concrete rheology. J. Constr. Build. Mater. 2011, 25, 1196–1204. [Google Scholar]
- Geiker, M.R.; Brand, I.M.; Thrane, L.N.; Nielsen, L.F. On the effect of coarse aggregate fraction and shape on the rheological properties of self-compacting concrete. J. Cem. Concr. Aggreg. 2002, 24, 3–6. [Google Scholar]
- Kurokawa, Y.; Tanigawa, Y.; Mori, H.; Nishinosono, K. Analytical study on effect of volume fraction of coarse aggregate on Bingham’s constants of fresh concrete. J. Trans. Jpn. Concr. Inst. 1996, 18, 37–44. [Google Scholar]
- Tattersall, G.H.; Banfill, P.F. The Rheology of Fresh Concrete; Pitman: London, UK, 1983. [Google Scholar]
- Roussel, N.; Lemaître, A.; Flatt, R.J.; Coussot, P. Steady state flow of cement suspensions: A micromechanical state of the art. J. Cem. Concr. 2010, 40, 77–84. [Google Scholar] [CrossRef]
- Wallevik, J.E. Rheological properties of cement paste: Thixotropic behavior and structural breakdown. J. Cem. Concr. 2009, 39, 14–29. [Google Scholar] [CrossRef]
- Struble, L.J.; Lei, W.G. Rheological changes associated with setting of cement paste. J. Adv. Cem. Based Mater. 1995, 2, 224–230. [Google Scholar] [CrossRef]
- Ferraris, C.F.; Stutzman, P.E.; Guthrie, W.F.; Winpigler, J. Certification of SRM 2492: Bingham Paste Mixture for Rheological Measurements; SP-260-174 Rev. 2012; National Institute of Standards and Technology: Gaithersburg, MD, USA, 7 June 2012. [Google Scholar]
- Mikanovic, N.; Khayat, K.; Pagé, M.; Jolicoeur, C. Aqueous CaCO3 dispersions as reference systems for early-age cementitious materials. Colloids Surfaces A Physicochem. Eng. Asp. 2006, 291, 202–211. [Google Scholar] [CrossRef]
- Mikanovic, N.; Jolicoeur, C.; Khayat, K.; Pagé, M. Model systems for investigation of the stability and rheological properties of cement-based materials. In Proceedings of the 8th CANMET/ACI International Conference on Recent Advances in Concrete Technology, Montréal, QC, Canada, 31 May–3 June 2006; pp. 267–304. [Google Scholar]
- He, M.; Wang, Y.; Forssberg, E. Parameter studies the rheology of limestone slurries. J. Miner. Proc. 2006, 78, 63–77. [Google Scholar] [CrossRef]
- Lee, D.K.; Choi, M.S. Standard Reference Materials for Cement Paste, Part 1: Suggestion of Constituent Materials Based on Rheological Analysis. Materials 2018, 11, 624. [Google Scholar] [CrossRef] [PubMed]
- Swindells, J.F.; Hardy, R.C.; Cottington, R.L. Precise Measurement with Bingham Viscometers and Cannon Master Viscometers. J. Res. Natl. Bureau Stand. 1954, 52, 105–115. [Google Scholar] [CrossRef]
- Ferraris, C.F. Measurement of the rheological properties of cement paste: A New Approach. In Proceedings of the RILEM International Symposium on the Role of Admixtures in High Performance Concrete Monterrey, Mexico, 21–26 March 1999. [Google Scholar]
- Nehdi, M.; Rahman, M.A. Estimating rheological properties of cement pastes using various rheological models for different test geometry, gap and surface fiction. J. Cem. Concr. Res. 2004, 1993–2007. [Google Scholar] [CrossRef]
- Kulasegarm, S.; Karihaloo, B.L.; Ghanbari, A. Modelling the flow of self-compacting concrete. Int. J. Numer. Anal. Meth. Geomech. 2011, 35, 713–723. [Google Scholar] [CrossRef]
- Ferraris, C.F.; Gaidis, J.M. Connection between the rheology of concrete and rheology of cement paste. J. ACI Mater. 1992, 89, 388–393. [Google Scholar]
- Feys, D.; Cepuritis, R.; Jacobsen, S.; Lesage, K.; Secrieru, E.; Yahia, A. Measuring rheological properties of cement paste: Most common techniques, procedures and challenges. RILEM Tech. Lett. 2017, 2, 129–135. [Google Scholar] [CrossRef]
- Robertson, R.E. An Improved Mathematical Model for Relating Shear Stress to Shear Rate in Drilling Fluids and Cement Slurries. J. Soc. Pet. Eng. 1976, 16, 31–36. [Google Scholar] [CrossRef]
- You, C.D.; Byun, S.H.; Song, J.T. Rheological Properties of Cement Paste Containing Ultrafine Blast furnace Slag. J. Korea Ceram. Soc. 2007, 44, 430–436. [Google Scholar] [CrossRef]
- Yoo, D.W.; Choi, H.K.; Lee, S.H.; Lee, S.J. The Particle Size distribution of Cement Binder and Rheological Properties of Paste. J. Korean Recycl. Constr. Resour. Inst. 2011, 103–111. [Google Scholar]
- Roussel, N. Steady and transient flow behavior of fresh cement pastes. J. Cem. Concr. Res. 2005, 35, 1656–1664. [Google Scholar] [CrossRef]
- Nehdi, M.; Rahman, M.A. Effect of geometry and surface friction of test accessory on oscillatory rheological properties of cement pastes. J. ACI Mater. 2004, 101, 416–424. [Google Scholar]
- Byun, S.H.; Kim, H.C.; Kim, J.Y.; Choi, H.K.; Song, J.T. Effect of Cement particle Size on Properties of Ordinart Portland Cement. J. Korean Ceram. Soc. 2010, 47, 394–400. [Google Scholar] [CrossRef]
- Struble, L.; Sun, G.K. Viscosity of Portland cement paste as a function of concentration. J. Adv. Cem. Based Mater. 1995, 2, 62–69. [Google Scholar] [CrossRef]
- Farris, R.J. Prediction of the viscosity of multimodal suspensions from unimodal viscosity data. J. Trans. Soc. Rheol. 1968, 12, 281–301. [Google Scholar] [CrossRef]
- Uchikawa, H.; Ogawa, K.; Uchida, S. Influence of character of clinker on the early hydration process and rheological property of cement paste. J. Cem. Concr. Res. 1985, 15, 561–572. [Google Scholar] [CrossRef]
- Ferraris, C.F.; Obla, H.K.; Russell, H. The Influence of Mineral Admixtures on the Rheology of Cement paste and concrete. J. Cem. Concr. Res. 2001, 31, 245–255. [Google Scholar] [CrossRef]
- Papo, A.; Piani, L. Effect of Various Superplasticizers on the Rheological Properties of Portland Cement Pastes. J. Cem. Concr. Res. 2004, 34, 2097–2101. [Google Scholar] [CrossRef]
Item | Particle Size | Density | Constituent (%) | ||||
---|---|---|---|---|---|---|---|
(μm) | (g/cm3) | SiO2 | Al2O3 | Fe2O3 | MgO | CaO | |
Limestone | 20 | 2.7 | 0.3 | 0.1 | 0.16 | 0.2 | 99.3 |
Item | Constituent (%) | ||||||||
---|---|---|---|---|---|---|---|---|---|
Content | NH4 | SO4 | As | Fe | Pb | Acid-Base | Fatty Acid Ester | Sulfate | |
Glycerol | 99 | 0.005 | 0.002 | 0.0002 | 0.0003 | 0.0004 | 0.005 | 0.2 | 0.015 |
Mixing Ratio | Plastic Viscosity (Pa·s) | Yield Stress (Pa) |
---|---|---|
W/C = 0.37 | 1.0 ± 0.1 | 22.0 ± 3.0 |
W/C = 0.40 | 0.5 ± 0.1 | 15.0 ± 3.0 |
W/C = 0.45 | 0.3 ± 0.1 | 10.0 ± 3.0 |
Items | Cement Paste | Standard Reference Materials | ||||
---|---|---|---|---|---|---|
Mixing Ratios | W/C = 0.37 | W/C = 0.40 | W/C = 0.45 | W/L = 0.27 | W/L = 0.31 | W/L = 0.33 |
G/L = 0.12 | ||||||
Plastic viscosity (Pa·s) | 1.0 ± 0.1 | 0.5 ± 0.1 | 0.3 ± 0.1 | 1.1 | 0.5 | 0.3 |
Yield stress (Pa) | 22.0 ± 3.0 | 15.0 ± 3.0 | 10.0 ± 3.0 | 19.1 | 15 | 10.6 |
Items | Requirements | ||||||
---|---|---|---|---|---|---|---|
No | W/L | G/L | Separating Resistance | Linearity | Yield Value | Hysteresis | Chemical Stability |
1 | 0.27 | 0.12 | O 1 | O | O | O | O |
2 | 0.31 | O | O | O | O | O | |
3 | 0.33 | O | O | O | O | O |
No. | W/L | G/L | W/C |
---|---|---|---|
1 | 0.27 | 0.12 | 0.37 |
2 | 0.31 | 0.40 | |
3 | 0.33 | 0.45 |
No. | W/C | W/L | G/L |
---|---|---|---|
1 | 0.50 | 0.375 | 0.12 |
2 | 0.55 | 0.45 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, D.K.; Choi, M.S. Standard Reference Materials for Cement Paste: Part II-Determination of Mixing Ratios. Materials 2018, 11, 861. https://doi.org/10.3390/ma11050861
Lee DK, Choi MS. Standard Reference Materials for Cement Paste: Part II-Determination of Mixing Ratios. Materials. 2018; 11(5):861. https://doi.org/10.3390/ma11050861
Chicago/Turabian StyleLee, Dong Kyu, and Myoung Sung Choi. 2018. "Standard Reference Materials for Cement Paste: Part II-Determination of Mixing Ratios" Materials 11, no. 5: 861. https://doi.org/10.3390/ma11050861
APA StyleLee, D. K., & Choi, M. S. (2018). Standard Reference Materials for Cement Paste: Part II-Determination of Mixing Ratios. Materials, 11(5), 861. https://doi.org/10.3390/ma11050861