Extreme Ultraviolet to Visible Dispersed Single Photon Detection for Highly Sensitive Sensing of Fundamental Processes in Diverse Samples
Abstract
:1. Introduction
2. Detector Details
2.1. Photocathodes
2.2. Microchannel Plates
2.3. Position Sensitive Anodes
2.3.1. Wedge and Strip Anode
2.3.2. Delay-Line Anodes
2.3.3. Resistive Anodes
2.4. Time-Resolved Detection
2.5. Detector Efficiency
2.6. Spatial Effects
3. Combination of Single Photon Detection with Spectrometers
3.1. Spectrometer–Detector Combination
3.2. Measurement of Angular Distributions
4. Examples of Applications
4.1. Target Delivery and Differential Pumping
4.2. Gas Phase Targets
4.3. Cluster Targets
4.4. Liquid Targets
5. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
Abbreviations
UV | ultraviolet |
VUV | vacuum ultraviolet |
MCP | microchannel plate |
References
- Clampin, M.; Edwin, R.P. Large format imaging photon detector for astronomical spectroscopy. Rev. Sci. Instrum. 1987, 58, 167–173. [Google Scholar] [CrossRef]
- Wurz, P.; Gubler, L. Fast microchannel plate detector for particles. Rev. Sci. Instrum. 1996, 67, 1790–1793. [Google Scholar] [CrossRef]
- Feng, B.; Kang, K.; Wang, K.; Chen, Y.; Zhang, H. Design of a multi-anode microchannel array detector system. Nucl. Instrum. Methods Phys. Res. A 2004, 535, 546–549. [Google Scholar] [CrossRef]
- Timothy, J.G. Review of multianode microchannel array detector systems. J. Astron. Telesc. Instrum. Syst. 2016, 2, 030901. [Google Scholar] [CrossRef]
- Korth Kristalle GmbH. MgF2 and Fused Silica Transmission Spectrum. Available online: www.korth.de (accessed on 28 March 2018).
- eSource Optics. VUV-UV Optical Material Properties. Available online: www.esourceoptics.com (accessed on 28 March 2018).
- Thorlabs Inc. N-BK7 Transmission Spectrum. Available online: www.thorlabs.com (accessed on 28 March 2018).
- Wiza, J.L. Microchannel plate detectors. Nuclear Instrum. Methods 1979, 162, 587–601. [Google Scholar] [CrossRef]
- Gys, T. Micro-channel plates and vacuum detectors. Nucl. Instrum. Methods Phys. Res. Sect. A 2015, 787, 254–260. [Google Scholar] [CrossRef]
- Fehre, K.; Trojanowskaja, D.; Gatzke, J.; Kunitski, M.; Trinter, F.; Zeller, S.; Schmidt, L.P.H.; Stohner, J.; Berger, R.; Czasch, A.; et al. Absolute ion detection efficiencies of microchannel plates and funnel microchannel plates for multi-coincidence detection. Rev. Sci. Instrum. 2018, 89, 045112. [Google Scholar] [CrossRef] [PubMed]
- Martin, C.; Jelinsky, P.; Lampton, M.; Malina, R.F.; Anger, H.O. Wedge–and–strip anodes for centroid–finding position–sensitive photon and particle detectors. Rev. Sci. Instrum. 1981, 52, 1067–1074. [Google Scholar] [CrossRef]
- Jagutzki, O.; Cerezo, A.; Czasch, A.; Dörner, R.; Hattas, M.; Huang, M.; Mergel, V.; Spillmann, U.; Ullmann-Pfleger, K.; Weber, T.; Schmidt-Böcking, H.; Smith, G. Multiple hit readout of a microchannel plate detector with a three-layer delay-line anode. IEEE Trans. Nuclear Sci. 2002, 49, 2477–2483. [Google Scholar] [CrossRef]
- Lampton, M.; Carlson, C.W. Low-distortion resistive anodes for two-dimensional position-sensitive MCP systems. Rev. Sci. Instrum. 1979, 50, 1093–1097. [Google Scholar] [CrossRef] [PubMed]
- Quantar Technology. Installation and Maintenance Manual: Model 2401B Position Analyzer; Quantar Technology: Santa Cruz, CA, USA, 2013. [Google Scholar]
- Reiß, P.; Schmidt, P.; Tulin, I.; Knie, A.; Hentges, R.; Ehresmann, A. Photon–photon coincidence apparatus with position sensitive detectors. Nuclear Instrum. Methods Phys. Res. Sect. A 2015, 776, 57–64. [Google Scholar] [CrossRef]
- Kruit, P.; Read, F.H. Magnetic field paralleliser for 2π electron-spectrometer and electron-image magnifier. J. Phys. E Sci. Instrum. 1983, 16, 313–324. [Google Scholar] [CrossRef]
- Ullrich, J.; Moshammer, R.; Dorn, A.; Dörner, R.; Schmidt, L.P.H.; Schmidt-Böcking, H. Recoil-ion and electron momentum spectroscopy: Reaction-microscopes. Rep. Prog. Phys. 2003, 66, 1463–1545. [Google Scholar] [CrossRef]
- Taylor, S.; Eland, J.H. Light emissions accompanying molecular ionization found by a new triple coincidence technique. Chem. Phys. 2005, 315, 8–16. [Google Scholar] [CrossRef]
- Kivimäki, A.; Alvarez-Ruiz, J.; Coreno, M.; de Simone, M.; Moise, A.; Partanen, L.; Richter, R.; Stankiewicz, M. Dissociative photoionization of the NO molecule studied by photoelectron–photon coincidence technique. J. Electron Spectrosc. Related Phenom. 2010, 182, 63–69. [Google Scholar] [CrossRef] [Green Version]
- Gejo, T.; Ikegami, T.; Honma, K.; Harries, J.R.; Tamenori, Y. Fluorescence decay processes following resonant 2p photoexcitation of Ar atoms and clusters studied using a time-resolved fluorescence and photoion coincidence technique. J. Phys. B Atom. Mol. Opt. Phys. 2013, 46, 075102. [Google Scholar] [CrossRef]
- Photek. MCP240 Detector Data Sheet; Photek: St Leonards-on-Sea, UK, 2010. [Google Scholar]
- Palmer, C. Diffraction Grating Handbook, 6th ed.; Newport Corporation: New York, NY, USA, 2005. [Google Scholar]
- Demekhin, P.V.; Petrov, I.D.; Sukhorukov, V.L.; Kielich, W.; Knie, A.; Schmoranzer, H.; Ehresmann, A. Strong interference effects in the angularly resolved Auger decay and fluorescence emission spectra of the core-excited NO molecule. J. Phys. B Atom. Mol. Opt. Phys. 2010, 43, 165103. [Google Scholar] [CrossRef]
- Demekhin, P.V.; Petrov, I.D.; Sukhorukov, V.L.; Kielich, W.; Knie, A.; Schmoranzer, H.; Ehresmann, A. Symmetry-forbidden electronic state interference observed in angularly resolved NO+(A1Σ) deexcitation spectra of the N*O(2σ−12π2) resonance. Phys. Rev. Lett. 2010, 104, 243001. [Google Scholar] [CrossRef] [PubMed]
- Schill, R.H.; Hasselkamp, D.; Kammer, S.; Mickat, S.; Zimmermann, B.; Schartner, K.H.; Ehresmann, A.; Schmoranzer, H.; Schlüter, M.; Schutov, Y.A.; et al. Partial wave analysis of the Kr I 3d5/29 5p3/2→ Kr II 4p4(1D)5p 2F7/2 decay, based on orientation and alignment transfer. J. Phys. B Atom. Mol. Opt. Phys. 2003, 36, L57–L61. [Google Scholar] [CrossRef]
- Demekhin, P.V.; Petrov, I.D.; Tanaka, T.; Hoshino, M.; Tanaka, H.; Ueda, K.; Kielich, W.; Ehresmann, A. Large impact of the weak direct photoionization on the angularly resolved CO+ (A2Σ) de-excitation spectra of the CO*(1σ−12π) resonance. J. Phys. B Atom. Mol. Opt. Phys. 2010, 43, 065102. [Google Scholar] [CrossRef]
- Knie, A.; Hans, A.; Förstel, M.; Hergenhahn, U.; Schmidt, P.; Reiß, P.; Ozga, C.; Kambs, B.; Trinter, F.; Voigtsberger, J.; Metz, D.; et al. Detecting ultrafast interatomic electronic processes in media by fluorescence. New J. Phys. 2014, 16, 102002. [Google Scholar] [CrossRef]
- Ozga, C.; Reiß, P.; Kielich, W.; Klumpp, S.; Knie, A.; Ehresmann, A. Fluorescence cascades after excitation of Xe II 5p46p satellite states by synchrotron radiation. J. Phys. B Atom. Mol. Opt. Phys. 2015, 48, 015004. [Google Scholar] [CrossRef]
- Falta, J.; Möller, T.; Beckmann, F. Forschung Mit Synchrotronstrahlung, 1st ed.; Vieweg+Teubner Verlag: Wiesbaden, Germany, 2010. [Google Scholar]
- Hagena, O.F.; Obert, W. Cluster Formation in Expanding Supersonic Jets: Effect of Pressure, Temperature, Nozzle Size, and Test Gas. J. Chem. Phys. 1972, 56, 1793–1802. [Google Scholar] [CrossRef]
- Winter, B. Liquid microjet for photoelectron spectroscopy. Nuclear Instrum. Methods Phys. Res. Sect. A 2009, 601, 139–150. [Google Scholar] [CrossRef]
- Schmoranzer, H.; Lauer, S.; Liebel, H.; Ehresmann, A.; Demekhin, P.V.; Lagutin, B.M.; Petrov, I.D.; Sukhorukov, V.L. Manifestation of doubly excited atomic states in the photoionization cross-sections of Ar, Kr and Xe in the vicinity of the subvalence ns-shell threshold. J. Electron Spectrosc. Related Phenom. 2001, 114–116, 135–140. [Google Scholar] [CrossRef]
- Glass-Maujean, M.; Jungen, C.; Schmoranzer, H.; Knie, A.; Haar, I.; Hentges, R.; Kielich, W.; Jänkälä, K.; Ehresmann, A. H2 Superexcited States: Experimental and Theoretical Characterization of their Competing Decay-Channel Fluorescence, Dissociation, and Ionization. Phys. Rev. Lett. 2010, 104. [Google Scholar] [CrossRef] [PubMed]
- Demekhin, P.V.; Sukhorukov, V.L.; Kielich, W.; Werner, L.; Klumpp, S.; Ehresmann, A.; Schartner, K.H.; Schmoranzer, H. Vibrational analysis of the N+2 (C → X) fluorescence in the vicinity of the 1s →π* excitation. J. Phys. B Atom. Mol. Opt. Phys. 2008, 41, 045104. [Google Scholar] [CrossRef]
- Knie, A.; Ilchen, M.; Schmidt, P.; Reiß, P.; Ozga, C.; Kambs, B.; Hans, A.; Müglich, N.; Galitskiy, S.A.; Glaser, L.; et al. Angle-resolved study of resonant Auger decay and fluorescence emission processes after core excitations of the terminal and central nitrogen atoms in N2O. Phys. Rev. A 2014, 90, 013416. [Google Scholar] [CrossRef]
- Hans, A.; Knie, A.; Schmidt, P.; Ben Ltaief, L.; Ozga, C.; Reiß, P.; Huckfeldt, H.; Förstel, M.; Hergenhahn, U.; Ehresmann, A. Lyman-series emission after valence and core excitation of water vapor. Phys. Rev. A 2015, 92. [Google Scholar] [CrossRef]
- Zimmermann, B.; Schartner, K.H.; Wilhelmi, O.; Kammer, S.; Liebel, H.; Ehresmann, A.; Schmoranzer, H. Experimental high resolution study of the photoproduction of Ne+3p satellites in the threshold energy range. J. Phys. B Atom. Mol. Opt. Phys. 2004, 37, 511–523. [Google Scholar] [CrossRef]
- Demekhin, P.V.; Petrov, I.D.; Lagutin, B.M.; Sukhorukov, V.L.; Vollweiler, F.; Klumpp, S.; Ehresmann, A.; Schartner, K.H.; Schmoranzer, H. Interaction between resonances through autoionization continua near the 4s-threshold in Kr II. J. Phys. B Atom. Mol. Opt. Phys. 2005, 38, 3129–3145. [Google Scholar] [CrossRef]
- Sukhorukov, V.L.; Petrov, I.D.; Lagutin, B.M.; Schmoranzer, H.; Kielich, W.; Demekhin, P.V.; Ehresmann, A. Photoionization of Xe near 5s threshold: I. Theoretical study of 5s–np resonance structure in 5p-photoabsorption. Eur. Phys. J. D 2010, 59, 151–159. [Google Scholar] [CrossRef]
- Haberland, H. Clusters of Atoms and Molecules; Springer: Berlin/Heidelberg, Germany, 1994; Volume 52. [Google Scholar]
- Johnston, R.L. Atomic and Molecular Clusters; Taylor & Francis: London, UK, 2002. [Google Scholar]
- Möller, T.; Zimmerer, G. Fluorescence spectroscopy as a probe of the electronic structure and the dynamics of rare-gas clusters. J. Opt. Soc. Am. B 1989, 6, 1062. [Google Scholar] [CrossRef]
- Hans, A.; Knie, A.; Förstel, M.; Schmidt, P.; Reiß, P.; Ozga, C.; Hergenhahn, U.; Ehresmann, A. Determination of absolute cross sections for cluster-specific decays. J. Phys. B Atom. Mol. Opt. Phys. 2016, 49, 105101. [Google Scholar] [CrossRef]
- Hans, A.; Ben Ltaief, L.; Förstel, M.; Schmidt, P.; Ozga, C.; Reiß, P.; Holzapfel, X.; Küstner-Wetekam, C.; Wiegandt, F.; Trinter, F.; et al. Fluorescence cascades evoked by resonant interatomic Coulombic decay of inner-valence excited neon clusters. Chem. Phys. 2017, 482, 165–168. [Google Scholar] [CrossRef]
- Hans, A.; Ozga, C.; Seidel, R.; Schmidt, P.; Ueltzhöffer, T.; Holzapfel, X.; Wenzel, P.; Reiß, P.; Pohl, M.N.; Unger, I.; et al. Optical Fluorescence Detected from X-ray Irradiated Liquid Water. J. Phys. Chem. B 2017, 121, 2326–2330. [Google Scholar] [CrossRef] [PubMed]
Window Material | Photocathode | Sensitivity Range |
---|---|---|
none | none, bare MCP | <130 nm |
MgF2 | none, bare MCP | 115 nm to 130 nm |
MgF2 | CsTe | 115 nm to 300 nm |
MgF2 | CsI | 115 nm to 200 nm |
MgF2 | bialkali | 115 nm to 650 nm |
fused silica | multialkali, S-20 | 160 nm to 800 nm |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hans, A.; Schmidt, P.; Ozga, C.; Hartmann, G.; Holzapfel, X.; Ehresmann, A.; Knie, A. Extreme Ultraviolet to Visible Dispersed Single Photon Detection for Highly Sensitive Sensing of Fundamental Processes in Diverse Samples. Materials 2018, 11, 869. https://doi.org/10.3390/ma11060869
Hans A, Schmidt P, Ozga C, Hartmann G, Holzapfel X, Ehresmann A, Knie A. Extreme Ultraviolet to Visible Dispersed Single Photon Detection for Highly Sensitive Sensing of Fundamental Processes in Diverse Samples. Materials. 2018; 11(6):869. https://doi.org/10.3390/ma11060869
Chicago/Turabian StyleHans, Andreas, Philipp Schmidt, Christian Ozga, Gregor Hartmann, Xaver Holzapfel, Arno Ehresmann, and André Knie. 2018. "Extreme Ultraviolet to Visible Dispersed Single Photon Detection for Highly Sensitive Sensing of Fundamental Processes in Diverse Samples" Materials 11, no. 6: 869. https://doi.org/10.3390/ma11060869
APA StyleHans, A., Schmidt, P., Ozga, C., Hartmann, G., Holzapfel, X., Ehresmann, A., & Knie, A. (2018). Extreme Ultraviolet to Visible Dispersed Single Photon Detection for Highly Sensitive Sensing of Fundamental Processes in Diverse Samples. Materials, 11(6), 869. https://doi.org/10.3390/ma11060869