Carbon Black-Carbon Nanotube Co-Doped Polyimide Sensors for Simultaneous Determination of Ascorbic Acid, Uric Acid, and Dopamine
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Materials
2.2. Apparatus
2.3. Synthesis of PI
2.3.1. The Synthesis of 9,9′-Bis[4-(4-nitro-2-hydroxybenzoxyl) phenyl] Fluorene (BNHOPF)
2.3.2. The Synthesis of 9,9′-Bis[4-(4-amino-2-hydroxybenzoxyl) phenyl] Fluorene (BAHOPF)
2.3.3. Preparation of Polyimide (PI)
2.3.4. Fabrication Procedures of the CB-CNT/PI/GCE
3. Results and Discussion
3.1. Structure Characterization of Monomers
3.2. Structure Characterization of Polyimide Powder
3.3. Characterization of the CB-CNT/PI/GCE
3.4. Electrocatalytic Oxidation of AA, DA, and UA
3.5. Differential Pulse Voltammetry (DPV) for Simultaneous Detection of AA, DA, and UA
3.6. Electrochemical Determination of AA, DA, and UA
3.7. Selectivity, Reproducibility, and Long-Term Stability
3.8. Real Sample Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Wu, W.C.; Chang, H.W.; Tsai, Y.C. Electrocatalytic detection of dopamine in the presence of ascorbic acid and uric acid at silicon carbide coated electrodes. Chem. Commun. 2011, 47, 6458–6460. [Google Scholar] [CrossRef] [PubMed]
- Zhang, A.; Neumeyer, J.L.; Baldessarini, R.J. Recent progress in development of dopamine receptor subtype-selective agents: Potential therapeutics for neurological and psychiatric disorders. Chem. Rev. 2007, 107, 274–302. [Google Scholar] [CrossRef] [PubMed]
- Palomäki, T.; Chumillas, S.; Sainio, S.; Protopopova, V.; Kauppila, M.; Koskinen, J.; Climent, V.; Feliu, J.M.; Laurila, T. Electrochemical reactions of catechol, methylcatechol and dopamine at tetrahedral amorphous carbon (ta-C) thin film electrodes. Diam. Relat. Mater. 2015, 59, 30–39. [Google Scholar] [CrossRef] [Green Version]
- Chumillas, S.; Figueiredo, M.C.; Climent, V.; Feliu, J.M. Study of dopamine reactivity on platinum single crystal electrode surfaces. Electrochim. Acta 2013, 109, 577–586. [Google Scholar] [CrossRef]
- Mo, J.W.; Ogorevc, B. Glassy carbon electrode modified with poly(dibromofluorescein) for the selective determination of dopamine and uric acid in the presence of ascorbic acid. Michrochim. Acta 2012, 178, 123–130. [Google Scholar] [CrossRef]
- Wang, Y.; Hasebe, Y.J. Uricase-adsorbed carbon-felt reactor coupled with a peroxidase-modified carbon-felt-based H2O2 detector for highly sensitive amperometric flow determination ofuric acid. J. Pharm. Biomed. Anal. 2012, 57, 125–132. [Google Scholar] [CrossRef] [PubMed]
- Guilbault, G.G. Analytical Uses of Immoblised Enzymes; Marcel Dekker: New York, NY, USA, 1984. [Google Scholar]
- Yang, Y.J.; Li, W. CTAB functionalized graphene oxide/multiwalled carbon nanotube composite modified electrode for the simultaneous determination of ascorbic acid, dopamine, uric acid and nitrite. Biosens. Bioelectron. 2014, 56, 300–306. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Lin, H.C.; Peng, H.; Qi, R.J.; Luo, C.H. A glassy carbon electrode modified with MoS2 nanosheets and poly(3,4-ethylenedioxythiophene) for simultaneous electrochemical detection of ascorbicacid, dopamine and uric acid. Microchim. Acta 2016, 183, 2517–2523. [Google Scholar] [CrossRef]
- Jadon, N.; Jain, R.; Sharma, S.; Singh, K. Recent trends in electrochemical sensors for multianalyte detection—A review. Talanta 2016, 161, 894–916. [Google Scholar] [CrossRef] [PubMed]
- Zhu, S.Y.; Li, H.J.; Niu, W.X.; Xu, G.B. Simultaneous electrochemical determination of uric acid, dopamine, and ascorbic acid at single-walled carbon nanohorn modified glassy carbon electrode. Biosens. Bioelectron. 2009, 25, 940–943. [Google Scholar] [CrossRef] [PubMed]
- Sun, C.L.; Chang, C.T.; Lee, H.H.; Zhou, J.G.; Wang, J.; Sham, T.K.; Pong, W.F. Microwave-Assisted Synthesis of a Core-Shell MWCNT/GONR Heterostructure for the Electrochemical Detection of Ascorbic Acid, Dopamine, and Uric Acid. ACS Nano 2011, 10, 7788–7795. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.F.; Wei, S.P.; Chen, S.H.; Yuan, D.H.; Zhang, W. Graphene-multiwall carbon nanotube-gold nanocluster composites modified electrode for the simultaneous determination of ascorbic acid, dopamine, and uric acid. Appl. Biochem. Biotechnol. 2014, 173, 1717–1726. [Google Scholar] [CrossRef] [PubMed]
- Taleb, M.; Ivanov, R.; Bereznev, S.; Kazemi, S.H.; Hussainova, I. Ultra-sensitive voltammetric simultaneous determination of dopamine, uric acid and ascorbic acid based on a graphene-coated alumina electrode. Microchim. Acta 2017, 184, 4603–4610. [Google Scholar] [CrossRef]
- Laurila, T.; Sainio, S.; Caro, M.A. Hybrid carbon based nanomaterials for electrochemical detection of biomolecules. Prog. Mater. Sci. 2017, 88, 499–594. [Google Scholar] [CrossRef]
- Wu, F.; Huang, T.; Hu, Y.J.; Yang, X.; Ouyang, Y.J.; Xie, Q.J. Differential pulse voltammetric simultaneous determination of ascorbic acid, dopamine and uric acid on a glassy carbon electrode modified with electroreduced graphene oxide and imidazolium groups. Microchim. Acta 2016, 183, 2539–2546. [Google Scholar] [CrossRef]
- Mei, L.P.; Feng, J.J.; Wu, L.; Chen, J.R.; Shen, L.G.; Xie, Y.L.; Wang, A.J. A glassy carbon electrode modified with porous Cu2O nanospheres on reduced graphene oxide support for simultaneous sensing of uric acid and dopamine with high selectivity over ascorbic acid. Microchim. Acta 2016, 183, 2039–2046. [Google Scholar] [CrossRef]
- Wu, L.N.; Tan, Y.L.; Wang, L.; Sun, S.N.; Qu, Z.Y.; Zhang, J.M.; Fan, Y.J. Dopamine sensor based on a hybrid material composed of cuprous oxide hollow microspheres and carbon black. Microchim. Acta 2015, 182, 1361–1369. [Google Scholar] [CrossRef]
- Łuczak, T.; Osińska, M. New self-assembled layers composed with gold nanoparticles, cysteamine and dihydrolipoic acid deposited on bare gold template for highly sensitive and selective simultaneous sensing of dopamine in the presence of interfering ascorbic and uric acids. J. Solid State Electrochem. 2017, 21, 747–758. [Google Scholar] [CrossRef]
- Zheng, X.; Zhou, X.; Ji, X.; Lin, R.; Lin, W. Simultaneous determination of ascorbic acid, dopamine and uric acid using poly(4-aminobutyric acid) modified glassy carbon electrode. Sens. Actuators B 2013, 178, 359–365. [Google Scholar] [CrossRef]
- Zheng, Y.J.; Huang, Z.J.; Zhao, C.F.; Weng, S.H.; Zheng, W.; Lin, X.H. A Gold electrode with a flower-like gold nanostructure for simultaneous determination of dopamine and ascorbic acid. Microchim. Acta 2013, 180, 537–544. [Google Scholar] [CrossRef]
- Poh, W.C.; Loh, K.P.; Zhang, W.D.; Sudhiranjan, T.; Ye, J.S.; Sheu, F.S. Biosensing properties of diamond and carbon nanotubes. Langmuir 2004, 20, 5484–5492. [Google Scholar] [CrossRef] [PubMed]
- Nasri, Z.; Shams, E. Application of silica gel as an effective modifier for the voltammetric determination of dopamine in the presence of ascorbic acid and uric acid. Electrochim. Acta 2009, 54, 7416–7421. [Google Scholar] [CrossRef]
- Lacroix, M.; Bianco, P.; Lojou, E. Modified random assembly of microelectrodes for the selective electrochemical detection of dopamine. Electroanalysis 1999, 11, 1068–1076. [Google Scholar] [CrossRef]
- Shen, X.; Xia, X.H.; Du, Y.L.; Wang, C.M. Electroless deposition of Au nanoparticles on reduced graphene oxide/polyimide film for electrochemical detection of hydroquinone and catechol. Front. Mater. Sci. 2017, 11, 262–270. [Google Scholar] [CrossRef]
- Li, H.; Cheng, G.; Xu, G.W.; Luo, L. Influence of polyimide on thermal stress evolution in polyimide/Cu think film composite. J. Mater. Sci. Mater. Electron. 2016, 27, 8325–8331. [Google Scholar] [CrossRef]
- Ma, X.H.; Swaidan, R.; Belmabkhout, Y.; Zhu, Y.H.; Litwiller, E.; Jouiad, M.; Pinnau, L.; Han, Y. Synthesis and gas transport properties of hydroxyl-functionalized polyimides with intrinsic microporosity. Macromolecules 2012, 45, 3841–3849. [Google Scholar] [CrossRef]
- Ensafi, A.A.; Taei, M.; Khayamian, T.; Arabzadeh, A. Highly selective determination of ascorbic acid, dopamine, and uric acid by differential pulse voltammetry using poly (sulfonazo III) modified glassy carbon electrode. Sens. Actuators B 2010, 147, 213–221. [Google Scholar] [CrossRef]
- Ping, J.; Wu, J.; Wang, Y.; Ying, Y. Simultaneous determination of ascorbic acid, dopamine and uric acid using high-performance screen-printed graphene electrode. Biosens. Bioelectron. 2012, 34, 70–76. [Google Scholar] [CrossRef] [PubMed]
- Jiang, J.; Du, X. Sensitive electrochemical sensors for simultaneous determination of ascorbic acid, dopamine, and uric acid based on Au@Pd-reduced grapheme oxide nanocomposites. Nanoscale 2014, 6, 11303–11309. [Google Scholar] [CrossRef] [PubMed]
- Yue, H.Y.; Huang, S.; Chang, J.; Heo, C.; Yao, F.; Adhikari, S.; Gunes, F.; Liu, L.C.; Lee, T.H.; Oh, E.S.; et al. ZnO Nanowire arrays on 3D hierarchical graphene foam: Biomarker detection of parkinson’s disease. ACS Nano 2014, 8, 1639–1646. [Google Scholar] [CrossRef] [PubMed]
- Su, C.H.; Sun, C.L.; Liao, Y.C. Printed combinatorial sensors for simultaneous detection of ascorbic acid, uric acid, dopamine, and nitrite. ACS Omega 2017, 2, 4245–4252. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Liu, D.; Huang, J.; You, T. Simultaneous determination of dopamine, ascorbic acid and uric acid at electrochemically reduced graphene oxide modified electrode. Sens. Actuators B 2014, 193, 166–172. [Google Scholar] [CrossRef]
- Lin, K.C.; Tsai, T.H.; Chen, S.M. Performing enzyme-free H2O2 biosensor and simultaneous determination for AA, DA, and UA by MWCNT–PEDOT film. Biosens. Bioelectron. 2010, 26, 608–614. [Google Scholar] [CrossRef] [PubMed]
- Ramakrishnan, S.; Pradeep, K.R.; Raghul, A.; Senthilkumar, R.; Rangarajan, M.; Kothurkar, N.K. One-step synthesis of Pt-decorated graphene-carbon nanotubes for the electrochemical sensing of dopamine, uric acid and ascorbic acid. Anal. Methods 2015, 7, 779–786. [Google Scholar] [CrossRef]
- Tang, C.F.; Kumar, S.A.; Chen, S.M. Zinc oxide/redox mediator composite films-based sensor for electrochemical detection of important biomolecules. Anal. Biochem. 2008, 380, 174–183. [Google Scholar] [CrossRef] [PubMed]
- Teo, P.S.; Alagarsamy, P.; Huang, N.M.; Lim, H.N.; Yusran, S. Simultaneous electrochemical detection of dopamine and ascorbic acid using an iron oxide/reduced graphene oxide modified glassy carbon electrode. Sensors 2014, 14, 15227–15243. [Google Scholar] [CrossRef]
- Sun, D.; Zhao, Q.; Tan, F.; Wang, X.; Gao, J. Simultaneous detection of dopamine, uric acid, and ascorbic acid using SnO2 nanoparticles/multi-walled carbon nanotubes/carbon paste electrode. Anal. Methods 2012, 4, 3283–3289. [Google Scholar] [CrossRef]
- Du, J.; Yue, R.; Ren, F.; Yao, Z.; Jiang, F.; Yang, P. Simultaneous determination of uric acid and dopamine using a carbon fiber electrode modified by layer-by-layer assembly of graphene and gold nanoparticles. Gold Bull. 2013, 46, 137–144. [Google Scholar] [CrossRef] [Green Version]
Interferent | Current Intensity Variation (AA) | Current Intensity Variation (DA) | Current Intensity Variation (UA) |
---|---|---|---|
FeCl3 | 0.99% | 2.61% | 0.69% |
NH4Cl | −2.63% | −6.29% | −1.82% |
NaCl | 0.74% | 2.39% | 0.51% |
KCl | 0.63% | 1.66% | 0.43% |
Urea | 0.43% | 1.26% | 0.65% |
Citric acid | 0 | 0 | 0 |
Glucose | 0 | 0 | 0 |
Fructose | 0 | 0 | 0 |
Maltose | 0 | 0 | 0 |
H2O2 | 0 | 0 | 0 |
Na2SO4 | 0 | 0 | 0 |
Sample | Add (μmol L−1) | Found (μmol L−1) | RSD (%) | Recovery (%) | |
---|---|---|---|---|---|
Urine 1 | AA | 200 | 204.0 | 2.5 | 102.0 |
DA | 100 | 107.5 | 1.9 | 108.0 | |
UA | 50 | 49.9 | 3.2 | 99.8 | |
Urine 2 | AA | 200 | 195.8 | 2.4 | 97.9 |
DA | 100 | 90.7 | 3.2 | 90.7 | |
UA | 50 | 52.1 | 3.5 | 104.2 | |
Urine 3 | AA | 200 | 192.8 | 2.8 | 96.4 |
DA | 100 | 107.4 | 2.7 | 107.4 | |
UA | 50 | 54.1 | 3.1 | 108.2 |
Electrode | Method | Linear Range (µM) | Detection Limit (µM) | Peak Separation (mV) | Refs. | |||||
---|---|---|---|---|---|---|---|---|---|---|
AA | DA | UA | AA | DA | UA | AA-DA | DA-UA | |||
ERGO/GCE a | DPV | 300–2000 | 0.5–60 | 0.5–60 | 300 | 0.5 | 0.5 | 240 | 130 | [33] |
MoS2/PEDOT/GCE b | DPV | 20–140 | 1–80 | 2–25 | 5.83 | 0.52 | 0.95 | 210 | 150 | [9] |
MWCNT/PEDOT c | DPV | 100–2000 | 10–330 | 10–25 | 100 | 10 | 10 | 220 | 140 | [34] |
ZnO/RM/GCE d | CV | 15–240 | 6–960 | 50–800 | 1.4 | 0.7 | 4.5 | ---- | ---- | [36] |
Fe3O4/rGO/GCE e | DPV | 1000–9000 | 0.5–10 | ---- | 0.12 | 0.42 | ---- | 210 | ---- | [37] |
nanoSnO2/MWCNTs/CPE f | DPV | 0.1–5 | 0.3–50 | 3–200 | 50 | 0.03 | 1.0 | 224 | 165 | [38] |
Pt-Gr-CNT/GCE g | DPV | 200–900 | 0.2–30 | 0.1–50 | 50 | 0.01 | 0.1 | 208 | 140 | [35] |
GE/Au/GE/CFE h | DPV | ---- | 0.6–44.0 | 12.6–413.6 | ---- | 0.6 | 12.6 | 108 | 150 | [39] |
CB-CNT/PI/GCE | DPV | 1000–24000 | 3–300 | 5–500 | 154 | 1.86 | 3.0 | 166 | 148 | This work |
amperometry | 100–5000 | 80–3000 | 10–1000 | 75 | 60 | 8.8 | ---- | ----- |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Yang, T.; Hasebe, Y.; Zhang, Z.; Tao, D. Carbon Black-Carbon Nanotube Co-Doped Polyimide Sensors for Simultaneous Determination of Ascorbic Acid, Uric Acid, and Dopamine. Materials 2018, 11, 1691. https://doi.org/10.3390/ma11091691
Wang Y, Yang T, Hasebe Y, Zhang Z, Tao D. Carbon Black-Carbon Nanotube Co-Doped Polyimide Sensors for Simultaneous Determination of Ascorbic Acid, Uric Acid, and Dopamine. Materials. 2018; 11(9):1691. https://doi.org/10.3390/ma11091691
Chicago/Turabian StyleWang, Yue, Tian Yang, Yasushi Hasebe, Zhiqiang Zhang, and Dongping Tao. 2018. "Carbon Black-Carbon Nanotube Co-Doped Polyimide Sensors for Simultaneous Determination of Ascorbic Acid, Uric Acid, and Dopamine" Materials 11, no. 9: 1691. https://doi.org/10.3390/ma11091691
APA StyleWang, Y., Yang, T., Hasebe, Y., Zhang, Z., & Tao, D. (2018). Carbon Black-Carbon Nanotube Co-Doped Polyimide Sensors for Simultaneous Determination of Ascorbic Acid, Uric Acid, and Dopamine. Materials, 11(9), 1691. https://doi.org/10.3390/ma11091691