Next Article in Journal
Nanoheterostructures (NHS) and Their Applications in Nanomedicine: Focusing on In Vivo Studies
Next Article in Special Issue
Tailoring Electro/Optical Properties of Transparent Boron-Doped Carbon Nanowalls Grown on Quartz
Previous Article in Journal
Magnesium Implants: Prospects and Challenges
Previous Article in Special Issue
A Comparative Study of E-Beam Deposited Gate Dielectrics on Channel Width-Dependent Performance and Reliability of a-IGZO Thin-Film Transistors
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Nanostructure and Optical Property Investigations of SrTiO3 Films Deposited by Magnetron Sputtering

1
Department of Optical Science and Engineering, Shanghai Engineering Research Center of Ultra-Precision Optical Manufacturing, Fudan University, Shanghai 200433, China
2
Center for Intelligent Medical Electronic Engineering, School of Information Science and Technology, Fudan University, Shanghai 200433, China
3
Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Fudan University, Shanghai 200433, China
4
College of physical Engineering, Qufu Normal University, Qufu 273165, China
*
Author to whom correspondence should be addressed.
Materials 2019, 12(1), 138; https://doi.org/10.3390/ma12010138
Submission received: 27 November 2018 / Revised: 20 December 2018 / Accepted: 20 December 2018 / Published: 3 January 2019
(This article belongs to the Special Issue Transparent Conductive Films and Their Applications)

Abstract

:
Strontium titanate thin films were deposited on a silicon substrate by radio-frequency magnetron sputtering. The structural and optical properties of these films were characterized by X-ray diffraction, high-resolution transmission electron microscopy, X-ray photoelectron spectroscopy, and spectroscopic ellipsometry, respectively. After annealing at 600–800 °C, the as-deposited films changed from amorphous to polycrystalline. It was found that an amorphous interfacial layer appeared between the SrTiO3 layer and Si substrate in each as-deposited film, which grew thicker after annealing. The optical parameters of the SrTiO3 film samples were acquired from ellipsometry spectra by fitting with a Lorentz oscillator model. Moreover, we found that the band gap energy of the samples diminished after thermal treatment.

1. Introduction

Strontium titanate (SrTiO3) has attracted much interest in many fields for its excellent properties, such as high dielectric constant, low leakage current, good dielectric tenability, and high Seebeck coefficient. As one of the perovskite oxides, SrTiO3 has a face-centered cubic structure at room temperature. In the bulk of SrTiO3, its lattice constant is 3.90 Å, and the indirect band gap is 3.2 eV, which is expected to originate from the separation between the 2p-level of oxygen ions and the 3d-level of titanium ions [1]. As an excellent dielectric film for Dynamic Random Access Memories (DRAMs), SrTiO3 thin film has a high dielectric constant, even when very thin (~10 nm) [2]. A Resistive Random Access Memory (RRAM) cell fabricated using SrTiO3 thin film has a large resistance ratio, up to 103–104 between high and low resistance states, and shows good retention properties in a long test time [3]. Regarding dielectric tunable devices, SrTiO3 thin film has a 65% variation of the permittivity in the terahertz range [4]. Because of its large Seebeck coefficient, SrTiO3 thin film is also an attractive thermoelectric material [5,6].
SrTiO3 thin films can be fabricated by many depositional techniques. Chemical techniques include atomic layer deposition (ALD) [7], metal organic vapor deposition (MOCVD) [8], and the sol-gel process [9], among others. Physical techniques include pulsed laser deposition (PLD) [10] and magnetron sputtering [11,12,13], among others. Compared to other techniques, magnetron sputtering shows many advantages, i.e., wide compositional versatility, very high purity, extremely high adhesion of films, controllable deposition rate, etc. Although previous studies have reported on the optical and electrical properties of different SrTiO3 thin films, few investigations have mentioned the influence of thermal treatment on the microstructural and optical properties. In this study, SrTiO3 thin films deposited by radio-frequency (RF) magnetron sputtering were annealed at different temperatures (500–800 °C), and the influence of thermal treatment on the crystallization, surface morphology, cross-section structure, film chemistry, and optical properties were investigated in detail.

2. Materials and Methods

The SrTiO3 thin films were deposited on silicon substrates with <100> single crystalline orientation at room temperature using a LAB600sp typed RF magnetron sputtering system (Leybold Optics GmbH, Dresden, Germany). The size of SrTiO3 target with 99.99% purity was 4 inches in diameter and 6 mm in thickness. The background pressure in the vacuum chamber was 5.0 × 10−6 mbar. The RF power was set to 75 W. The working pressure of Ar gas was 9.6 × 10−3 mbar controlled by a mass flowmeter (MFC, Bronkhorst High-Tech B.V., Ruurlo, The Netherlands). After deposition, four samples were annealed at different temperatures of 500 °C, 600 °C, 700 °C and 800 °C in nitrogen for one hour, respectively.
The crystallinity of the as-deposited SrTiO3 thin films annealed at 500–800 °C was characterized by X-ray diffraction (XRD, Rigaku, Neu-Isenburg, Germany) with a Rigaku D/MAX 2550 VB/PC typed X-ray diffractometer using Cu Kα radiation (λ = 1.5406 Å). The surface roughness of the films was measured using a PSIA XE-100 atomic force microscope (AFM, PSIA, Suwon, Korea). High-resolution transmission microscopy (HRTEM, FEI, Hillsboro, OR, USA) is capable of imaging at a significantly higher resolution to capture fine detail, even as small as a single column of atoms, owing to the smaller de Broglie wavelength of electrons. The specimen is most often an ultrathin section less than 100 nm thick or a suspension on a grid. HRTEM was employed to examine the cross-sectional microstructure of the film samples. The depth profiles and the chemical binding structures of the sample films were studied using X-ray photoelectron spectroscopy (XPS, Thermo Fisher Scientific, Waltham, MA, USA) with Al Kα X-rays and Ephoton = 1500 eV. XPS can be used to analyze the surface chemistry of a material in its as-received state or after some treatment, such as thermal treatment. The optical constants, including refractive index and extinction coefficient, of the films were determined by spectroscopic ellipsometry (SE, Self-development, Shanghai, China) in the spectral range from 280 nm to 800 nm. Moreover, the band gap energy was calculated from the SE spectra.

3. Results and Discussions

Figure 1 shows the XRD patterns of as-deposited and annealed SrTiO3 thin films at different temperatures. No characteristic peaks of the SrTiO3 layer can be found in both the as-deposited and 500 °C annealed samples. It indicates both of the films are amorphous. When the annealing temperature reaches 600 °C, the thin film became polycrystalline, which is proved by the emergence of the three characteristic peaks at (100), (110), and (200). It shows that the onset crystallization temperature is around 600 °C. As the annealing temperature increases to 700 °C and 800 °C, the diffraction peaks became more intense and sharper, showing enhanced crystallinity of the SrTiO3 samples. Meanwhile, the lattice constant can be calculated from the diffraction peaks, which is a = b = c = 3.91 Å, showing cubic structure. Moreover, the average grain size can be determined from the major peak (200) by Scherrer’s formula [14],
D = κ λ / B c o s θ
where D is the average grain size, λ is the X-ray wavelength, B is the full width at half maximum of the peak, θ is the diffraction angle, and κ is the Scherrer’s constant of the order of unity for usual crystals. The average grain sizes of the thin films were 16.9 nm, 21.2 nm and 26.7 nm, corresponding to annealing temperatures of 600 °C, 700 °C and 800 °C, respectively.
Figure 2 shows the cross-section HRTEM micrographs of SrTiO3 samples which are, respectively, as-deposited and annealed at temperature from 500 to 800 °C. As shown in Figure 2a, the as-deposited SrTiO3 thin film is amorphous. The thickness of the SrTiO3 layer is 75.54 nm, as shown in Table 1. Meanwhile, an interfacial layer between the SrTiO3 layer and Si substrate is also observed, and the thickness of this layer measured in Figure 2b is 3.76 nm. After annealing at 500 °C, SrTiO3 thin film is still amorphous, and the thicknesses of SrTiO3 layer and interfacial layer are 74.69 nm and 2.53 nm, respectively. After annealing at 600 °C, crystallization took place in the SrTiO3 layer, as can be seen in Figure 2f. The inhomogeneity of SrTiO3 thin film decreases and the surface roughness increases, which is in good agreement with the XRD results. The thickness of the interfacial layer increases to 3.08 nm. One reason for this increase is the penetration of the particles from SrTiO3 layer and Si substrate into the interfacial layer as an effect of annealing, as confirmed below. When the annealing temperature is increased to 700 °C and 800 °C, the inhomogeneity of SrTiO3 thin films decreases sequentially, and the thicknesses of the interfacial layers increase to 5.58 nm and 12.22 nm, respectively.
To further investigate the elemental composition and chemical states of the SrTiO3 and interfacial layers in all the samples, XPS analysis was carried out. Figure 3 is the concentration depth profiles of the as-deposited and 800 °C annealed samples. The thickness of the SrTiO3 layer in as-deposited sample is thicker than that in 800 °C annealed sample. Besides, after annealing, more Si and SrTiO3 diffused to interfacial layer, causing the thickness of interfacial layer to increase. These results are in good agreement with the HRTEM results. For the as-deposited sample, the ratio of Sr/Ti/O in the etching time range of 0–840 s is about 1:1:3, indicating that the SrTiO3 thin film deposited by RF magnetron sputtering is reliable.
Figure 4a,b show Sr 3d core levels and Ti 2p core levels XPS spectra, respectively, of the as-deposited and 800 °C annealed SrTiO3 thin films at the etching time of 360 s. In Figure 4a, the peaks at 133.9 and 135.5 eV correspond to the binding energies of Sr2+ 3d5/2 and 3d3/2 [12]. In Figure 4b, the peaks at 458.8 and 464.3 eV correspond to the binding energies of Ti4+ 2p3/2 and 2p1/2 [12,15]. Another two weak peaks at 457.3 and 463.1 eV correspond to the binding energies of Ti3+ 2p3/2 and 2p1/2 [15], which come from defects in SrTiO3 thin films. These defects were reduced after annealing at 800 °C.
Figure 5 shows Si 2p core levels XPS spectra of the as-deposited and 800 °C annealed SrTiO3 thin films at the etching time of 960 s. The Si 2p peak is centered at around 99.2 eV, and the SiO2 peak is located at about 103.0 eV, which are consistent with previous results [16,17]. After annealing at 800 °C, the intensity of Si 2p peak is found to decrease greatly, while the intensity of SiO2 peak increases. This change in intensities is caused by the diffusion and reaction of silicon and oxygen in the SrTiO3/Si interface.
To investigate the optical constants and band-gap structure of SrTiO3 thin films prepared at different temperatures, the spectroscopic ellipsometry (SE) technique is applied in the range of 290–800 nm with different angles of incidence at 65°, 70°, and 75° [18]. The ellipsometric parameters 𝛹 and Δ are defined as,
ρ = r s / r p = t a n Ψ e x p ( i Δ )
where rp and rs represent the complex reflection coefficients of polarized light parallel and perpendicular to the incidence plane, respectively. Since the roughness layer of the as-deposited and 500 °C annealed samples are very thin (<1.8 nm), a four-phase model of Si substrate/interfacial layer/SrTiO3 layer/Air is designed for these two samples, and a five-phase model of Si substrate/interfacial layer/SrTiO3 layer/roughness layer/Air is designed for the samples annealed at 600 °C, 700 °C, and 800 °C. The effective complex dielectric function ε of the roughness layer can be parameterized using the Maxwell-Garnett effective medium approximation (EMA) presented as,
ε ε A i r ε + 2 ε A i r = ε S T O ε A i r ε S T O + 2 ε A i r f
where ε A i r (~1) and ε S T O are dielectric functions of atmosphere and SrTiO3 thin film, respectively, and f is the volume fraction of SrTiO3 in the roughness layer. Two Lorentz oscillators model and single Lorentz oscillator model are used to characterize ε S T O and ε I L (dielectric function of the interfacial layer) [19], respectively, described as follows,
ε ( E ) = ε 1 + i ε 2 = ε ( ) ( 1 + i A i 2 E i 2 E 2 j Γ i E )
where ε ( ) is the dielectric constant when photon energy E→∞, Ai, Γi, and Ei are, respectively, the amplitude, the damping factor, and center energy of the ith oscillator in units of eV. The refractive index and extinction coefficient can be calculated from the dielectric function as follows,
n = [ 1 2 ε 1 2 + ε 2 2 + ε 1 ] 1 2
k = [ 1 2 ε 1 2 + ε 2 2 ε 1 ] 1 2
In the fitting process, the thickness of each layer is fixed on the value in Table 1.
Figure 6 shows the calculated refractive indices and extinction coefficients of SrTiO3 thin films, both as-deposited and at different annealing temperatures. The parameters of the Lorentz oscillator model for SrTiO3 thin film are listed in Table 2. As can be seen in Figure 6, there are two dispersion regions in the range from 1.55 to 4.42 eV: one is the transparent region (1.55–4.00 eV for the as-deposited and 500 °C annealed SrTiO3 film, and 1.55–3.50 eV for SrTiO3 film annealed at 600–800 °C), and the rest region is the absorption region. Figure 6a shows that the refractive index increases with annealing temperature before annealing at 700 °C, and decreases with annealing temperature after annealing at 700 °C. Such a change is attributed to different values of packing density p of the films [9,10], which can be calculated from Lorentz-Lorenz relation [20],
p = ( n 2 1 n 2 + 2 ) / ( n b 2 1 n b 2 + 2 )
where nb is the refractive index of bulk SrTiO3. Taking nb = 2.432 at 550 nm, the values of packing densities are 0.86, 0.87, 0.96, 0.94 and 0.93 for the as-deposited film and films annealed at 500 °C, 600 °C, 700 °C and 800 °C, respectively. The as-deposited SrTiO3 film has a minimum packing density, which increases a little after annealing at 500 °C. The increase in packing density will lead to a decrease in thickness of SrTiO3 layer, as shown in Table 1. When the annealing temperature is up to 600 °C, the packing density increases to a maximum value, which is caused by the crystallization of SrTiO3 film. After annealing at 700 °C and 800 °C, the packing density shows a tendency of decreasing, which is attributed to the presence of cracks in the films at higher annealing temperatures.
As shown in Figure 6b, the extinction coefficients are very small (<0.02) in the transparent region. Meanwhile, the absorption edge moves toward lower photon energy at higher annealing temperatures. The absorption peak of the SrTiO3 thin film in high photon energy regions comes from the electronic inter-band transition [9]. Hence, the movements of absorption edges are related to the varieties of the bandgap structures in SrTiO3 thin films. The SrTiO3 thin film’s indirect-band-gap [21] and band gap Eg can be determined from the power-law behavior of Tauc [22],
( α h ν ) 1 / 2 = C ( h ν E g )
where α is the absorption coefficient, is the photon energy, and C is a constant. The absorption coefficient can be calculated from the relation,
α = 4 π k λ
Figure 7 shows the dependence of ( α h ν ) 1 / 2 on h ν for SrTiO3 thin films prepared at different temperatures. The band gap Eg is then determined by extrapolating the linear portion of the curves in the limit ( α h ν ) 1 / 2 = 0 . The values of the band gap Eg are listed in Table 2. As evident from Figure 7 and Table 2, the band gap decreases as the annealing temperature increases. The as-deposited and 500 °C annealed SrTiO3 thin films have a similar amorphous structure, and thus, the difference between their band gaps is small. After annealing at 600 °C, the SrTiO3 thin film transits from an amorphous phase to a polycrystalline phase, which results in a large decrease in band gap. When the annealing temperature goes up to 700 °C and 800 °C, the band gap decreases due to better crystallinity of SrTiO3 thin film.

4. Conclusions

SrTiO3 thin films have been deposited on Si substrates using RF magnetron sputtering, and then annealed in air at temperatures from 500 °C to 800 °C for 1 h. The as-deposited SrTiO3 thin film is amorphous with a stoichiometric ratio of about 1:1:3. The RMSE roughness of the as-deposited film is only 0.23 nm. The transition from amorphous phase to polycrystalline phase occurred at an annealing temperature between 500 °C and 600 °C. With the increase of annealing temperature, the average grain size and surface roughness of SrTiO3 thin films increase, while the inhomogeneity decreases. The refractive index in the transparent region increases with annealing temperature until 700 °C, and then decreases. The band gaps are estimated to be about 4.11, 4.08, 3.80, 3.75, and 3.71 eV for the as-deposited and annealed at 500 °C, 600 °C, 700 °C, and 800 °C SrTiO3 thin films, respectively. These results are useful as references for the potential applications of SrTiO3 in integrated optical and electrical devices.

Author Contributions

Conceptualization, D.X., J.L.; computation, D.X.; validation, D.X., J.L.; investigation, D.X., Y.Y., H.Z. (Huanfeng Zhu); data curation, D.X.; formal analysis, D.X., C.L.; L.C.; J.S., X.Z. (Xintong Zhang), X.Z. (Xia Zhang); writing-original draft preparation, D.X.; writing-review & editing, D.X., H.Z. (Hao Zhang); J.L.; supervision, J.L., H.Z. (Hao Zhang); resources, J.L.; project administration, J.L.

Funding

This research was funded by Natural Science Foundation of Shanghai, grant numbers 13ZR1402600, and 17ZR1402200; National Natural Science Foundation of China, grant numbers 60578047, and 61427815; Shanghai Commission of Science and Technology, grant number 06DJ14007; and the National “973” Program of China, grant numbers 2012CB934303 and 2009CB929201.

Acknowledgments

The authors would like to thank Liangyao Chen for his effective backup.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Cardona, M. Optical properties and band structure of SrTiO3 and BaTiO3. Phys. Rev. 1965, 140, A651–A655. [Google Scholar] [CrossRef]
  2. Lee, S.W.; Han, J.H.; Han, S.; Lee, W.; Jang, J.H.; Seo, M.; Kim, S.K.; Dussarrat, C.; Gatineau, J.; Min, Y.S.; et al. Atomic layer deposition of SrTiO3 thin films with highly enhanced growth rate for ultrahigh density capacitors. Chem. Mater. 2011, 23, 2227–2236. [Google Scholar] [CrossRef]
  3. Yan, X.B.; Li, K.; Yin, J.; Xia, Y.D.; Guo, H.X.; Chen, L.; Liu, Z.G. The resistive switching mechanism of Ag/SrTiO3/Pt memory cells. Electrochem. Solid State Lett. 2010, 13, H87–H89. [Google Scholar] [CrossRef]
  4. Kužel, P.; Kadlec, F.; Petzelt, J.; Schubert, J.; Panaitov, G. Highly tunable SrTiO3/DyScO3 heterostructures for applications in the terahertz range. Appl. Phys. Lett. 2007, 91, 232911. [Google Scholar] [CrossRef]
  5. Ohta, H.; Kim, S.; Mune, Y.; Mizoguchi, T.; Nomura, K.; Ohta, S.; Nomura, T.; Nakanishi, Y.; Ikuhara, Y.; Hirano, M.; et al. Giant thermoelectric Seebeck coefficient of two-dimensional electron gas in SrTiO3. Nat. Mater. 2007, 6, 129–134. [Google Scholar] [CrossRef] [PubMed]
  6. Jalan, B.; Stemmer, S. Large Seebeck coefficients and thermoelectric power factor of La-doped SrTiO3 thin films. Appl. Phys. Lett. 2010, 97, 042106. [Google Scholar] [CrossRef]
  7. Kosola, A.; Putkonen, M.; Johansson, L.S.; Niinisto, L. Effect of annealing in processing of strontium titanate thin films by ALD. Appl. Surf. Sci. 2003, 211, 102–112. [Google Scholar] [CrossRef]
  8. Kang, C.S.; Hwang, C.S.; Cho, H.J.; Lee, B.T.; Park, S.O.; Kim, J.W.; Horii, H.; Lee, S.I.; Koh, Y.B.; Lee, M.Y. Preparation and electrical properties of SrTiO3 thin films deposited by liquid source metal-organic chemical vapor deposition (MOCVD). Jpn. J. Appl. Phys. 1996, 35, 4890–4895. [Google Scholar] [CrossRef]
  9. Xie, T.; Wang, Y.; Liu, C.; Xu, L. New Insights into sensitization mechanism of the doped Ce (IV) into strontium Titanate. Materials 2018, 11, 646. [Google Scholar] [CrossRef]
  10. Marozau, I.; Shkabko, A.; Döbeli, M.; Lippert, T.; Logvinovich, D. Optical properties of nitrogen-substituted strontium Titanate thin films prepared by pulsed laser deposition. Materials 2009, 2, 1388–1401. [Google Scholar] [CrossRef]
  11. Swann, S. Magnetron sputtering. Phys. Technol. 1988, 19, 67–75. [Google Scholar] [CrossRef]
  12. Park, T.J.; Kim, J.H.; Jang, J.H.; Lee, J.; Lee, S.W.; Lee, S.Y.; Jung, H.S.; Hwang, C.S. Effects of annealing environment on interfacial reactions and electrical properties of ultrathin SrTiO3 on Si. J. Electrochem. Soc. 2009, 156, G129–G133. [Google Scholar] [CrossRef]
  13. Ma, J.H.; Huang, Z.M.; Meng, X.J.; Liu, S.J.; Zhang, X.D.; Sun, J.L.; Xue, J.Q.; Chu, J.H.; Li, J. Optical properties of SrTiO3 thin films deposited by radio-frequency magnetron sputtering at various substrate temperatures. J. Appl. Phys. 2006, 99, 033515. [Google Scholar] [CrossRef]
  14. Ishikawa, K.; Yoshikawa, K.; Okada, N. Size effect on the ferroelectric phase-transition in PbTiO3 ultrafine particles. Phys. Rev. B 1988, 37, 5852–5855. [Google Scholar] [CrossRef]
  15. Liao, J.X.; Yang, C.R.; Zhang, J.H.; Fu, C.L.; Chen, H.W.; Leng, W.J. The interfacial structures of (Ba, Sr)TiO3 films deposited by radio frequency magnetron sputtering. Appl. Surf. Sci. 2006, 252, 7407–7414. [Google Scholar] [CrossRef]
  16. Niu, G.; Peng, W.W.; Saint-Girons, G.; Penuelas, J.; Roy, P.; Brubach, J.B.; Maurice, J.L.; Hollinger, G.; Vilquin, B. Direct epitaxial growth of SrTiO3 on Si (001): Interface, crystallization and IR evidence of phase transition. Thin Solid Films 2011, 519, 5722–5725. [Google Scholar] [CrossRef]
  17. Shutthanandan, V.; Thevuthasan, S.; Liang, Y.; Adams, E.M.; Yu, Z.; Droopad, R. Direct observation of atomic disordering at the SrTiO3/Si interface due to oxygen diffusion. Appl. Phys. Lett. 2002, 80, 1803–1805. [Google Scholar] [CrossRef]
  18. Chen, L.Y.; Feng, X.W.; Su, Y.; Ma, H.Z.; Qian, Y.H. Design of a scanning ellipsometer by synchronous rotation of the polarizer and analyzer. Appl. Opt. 1994, 33, 1299–1305. [Google Scholar] [CrossRef] [PubMed]
  19. Shen, Y.; Zhou, P.; Sun, Q.Q.; Wan, L.; Li, J.; Chen, L.Y.; Zhang, D.W.; Wang, X.B. Optical investigation of reduced graphene oxide by spectroscopic ellipsometry and the band-gap tuning. Appl. Phys. Lett. 2011, 99, 141911. [Google Scholar] [CrossRef]
  20. Hubert, T.; Beck, U.; Kleinke, H. Amorphous and nanocrystalline SrTiO3 thin films. J. Non-Cryst. Solids 1996, 196, 150–154. [Google Scholar] [CrossRef]
  21. Gupta, V.; Mansingh, A. Influence of postdeposition annealing on the structural and optical properties of sputtered zinc oxide film. J. Appl. Phys. 1996, 80, 1063–1073. [Google Scholar] [CrossRef]
  22. Callaway, J. Quantum Theory of the Solid State; Academic Press: London, UK, 1974. [Google Scholar]
Figure 1. X-ray diffraction (XRD) patterns of SrTiO3 thin film annealed at different temperatures.
Figure 1. X-ray diffraction (XRD) patterns of SrTiO3 thin film annealed at different temperatures.
Materials 12 00138 g001
Figure 2. High-resolution transmission microscopy (HRTEM) photographs of SrTiO3 films (a) as-deposited, (c) 500 °C annealed, (e) 600 °C annealed, (g) 700 °C annealed, (i) 800 °C annealed, and the zoom in interfacial layers (b) as-deposited, (d) 500 °C annealed, (f) 600 °C annealed, (h) 700 °C annealed, (j) 800 °C annealed.
Figure 2. High-resolution transmission microscopy (HRTEM) photographs of SrTiO3 films (a) as-deposited, (c) 500 °C annealed, (e) 600 °C annealed, (g) 700 °C annealed, (i) 800 °C annealed, and the zoom in interfacial layers (b) as-deposited, (d) 500 °C annealed, (f) 600 °C annealed, (h) 700 °C annealed, (j) 800 °C annealed.
Materials 12 00138 g002
Figure 3. Depth profiles of the SrTiO3 films (a) as-deposited and (b) annealed at 800 °C.
Figure 3. Depth profiles of the SrTiO3 films (a) as-deposited and (b) annealed at 800 °C.
Materials 12 00138 g003
Figure 4. The X-ray photoelectron spectroscopy (XPS) spectra of (a) Sr 3d and (b) Ti 2p in the SrTiO3 films as-deposited and annealed at 800 °C.
Figure 4. The X-ray photoelectron spectroscopy (XPS) spectra of (a) Sr 3d and (b) Ti 2p in the SrTiO3 films as-deposited and annealed at 800 °C.
Materials 12 00138 g004
Figure 5. The Si 2p core levels XPS spectra of the as-deposited and 800 °C annealed SrTiO3 thin films at the etching time of 960 s.
Figure 5. The Si 2p core levels XPS spectra of the as-deposited and 800 °C annealed SrTiO3 thin films at the etching time of 960 s.
Materials 12 00138 g005
Figure 6. The calculated (a) refractive indices and (b) extinction coefficients of SrTiO3 thin films prepared at different temperatures.
Figure 6. The calculated (a) refractive indices and (b) extinction coefficients of SrTiO3 thin films prepared at different temperatures.
Materials 12 00138 g006
Figure 7. The ( α h ν ) 1 / 2 vs. h ν for the SrTiO3 films annealed at different temperatures.
Figure 7. The ( α h ν ) 1 / 2 vs. h ν for the SrTiO3 films annealed at different temperatures.
Materials 12 00138 g007
Table 1. Thickness data of the SrTiO3 films annealed at different temperatures.
Table 1. Thickness data of the SrTiO3 films annealed at different temperatures.
SampleSrTiO3 Layer (nm)Interfacial Layer (nm)Roughness Layer (nm)Root-Mean-Square Error (RMSE) Roughness (nm)
As-deposited75.543.761.410.23
500 °C72.962.531.730.33
600 °C67.093.086.911.58
700 °C68.215.587.771.76
800 °C67.6012.228.311.94
Table 2. Main parameters ( ε ( ) , A i and E i ) of the Lorentz oscillator model and the calculated band gap E g for SrTiO3 thin films annealed at different temperatures.
Table 2. Main parameters ( ε ( ) , A i and E i ) of the Lorentz oscillator model and the calculated band gap E g for SrTiO3 thin films annealed at different temperatures.
Sample ε ( ) A 1   ( eV ) E 1   ( eV ) A 2   ( eV ) E2 (eV)Eg (eV)
As-deposited1.510.674.378.116.634.11
500 °C1.630.654.377.476.454.08
600 °C1.501.394.1514.029.203.80
700 °C1.681.514.1110.197.803.75
800 °C1.731.484.0813.7010.803.71

Share and Cite

MDPI and ACS Style

Xu, D.; Yuan, Y.; Zhu, H.; Cheng, L.; Liu, C.; Su, J.; Zhang, X.; Zhang, H.; Zhang, X.; Li, J. Nanostructure and Optical Property Investigations of SrTiO3 Films Deposited by Magnetron Sputtering. Materials 2019, 12, 138. https://doi.org/10.3390/ma12010138

AMA Style

Xu D, Yuan Y, Zhu H, Cheng L, Liu C, Su J, Zhang X, Zhang H, Zhang X, Li J. Nanostructure and Optical Property Investigations of SrTiO3 Films Deposited by Magnetron Sputtering. Materials. 2019; 12(1):138. https://doi.org/10.3390/ma12010138

Chicago/Turabian Style

Xu, Da, Yafei Yuan, Huanfeng Zhu, Ling Cheng, Chunmin Liu, Jing Su, Xintong Zhang, Hao Zhang, Xia Zhang, and Jing Li. 2019. "Nanostructure and Optical Property Investigations of SrTiO3 Films Deposited by Magnetron Sputtering" Materials 12, no. 1: 138. https://doi.org/10.3390/ma12010138

APA Style

Xu, D., Yuan, Y., Zhu, H., Cheng, L., Liu, C., Su, J., Zhang, X., Zhang, H., Zhang, X., & Li, J. (2019). Nanostructure and Optical Property Investigations of SrTiO3 Films Deposited by Magnetron Sputtering. Materials, 12(1), 138. https://doi.org/10.3390/ma12010138

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop