Microstructure and Flexural Properties of Z-Pinned Carbon Fiber-Reinforced Aluminum Matrix Composites
Abstract
:1. Introduction
2. Experimental
2.1. Preparation of Z-Pinned and Unpinned Cf/Al Composites
2.2. Characterization Technique
3. Results and Discussion
3.1. Microstructure
3.2. Flexural Strength
3.3. Fracture Surface
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Wang, C.C.; Chen, G.Q.; Wang, X.; Zhang, Y.H.; Yang, Y.S. Effect of Mg content on the thermodynamics of interface reaction in Cf/Al composite. Metall. Mater. Trans. A 2012, 43, 2514–2519. [Google Scholar] [CrossRef]
- Daoud, A. Microstructure and tensile properties of 2014 Al alloy reinforced with continuous carbon fibers manufactured by gas pressure infiltration. Mater. Sci. Eng. A. 2005, 391, 114–120. [Google Scholar] [CrossRef]
- Zhang, Y.H.; Wu, G.H. Comparative study on the interface and mechanical properties of T700/Al and M40/Al composites. Rare metals 2010, 29, 102–107. [Google Scholar] [CrossRef]
- Su, J.; Wu, G.H.; Li, Y.; Gou, H.S.; Chen, G.H.; Xiu, Z.Y. Effects of anomalies on fracture processes of graphite fiber reinforced aluminum composite. Mater. Des. 2011, 32, 1582–1589. [Google Scholar] [CrossRef]
- Mouritz, A.P. Review of z-pinned composite laminates. Compos. Part A Appl. Sci. Manuf. 2007, 38, 2383–2397. [Google Scholar] [CrossRef]
- Ranatunga, V.; Clay, S.B. Cohesive modeling of damage growth in z-pinned laminates under mode-I loading. J. Compos. Mater. 2012, 47, 3269–3283. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, Y.; Wu, G. Interlaminar shear properties of z-pinned carbon fiber reinforced aluminum matrix composites by short-beam shear test. Materials 2018, 11, 1874. [Google Scholar] [CrossRef] [PubMed]
- Ko, M.G.; Kweon, J.H.; Choi, J.H. Fatigue characteristics of jagged pin-reinforced composite single-lap joints in hygrothermal environments. Compos. Struct. 2015, 119, 59–66. [Google Scholar] [CrossRef]
- Zhang, Y.; Yan, L.; Miao, M.; Wang, Q.; Wu, G. Microstructure and mechanical properties of z-pinned carbon fiber reinforced aluminum alloy composites. Mater. Des. 2015, 86, 872–877. [Google Scholar] [CrossRef]
- Hoffmann, J.; Scharr, G. Mechanical properties of composite laminates reinforced with rectangular z-pins in monotonic and cyclic tension. Compos. Part A 2018, 109, 163–170. [Google Scholar] [CrossRef]
- Knopp, A.; Düsterhoft, C.; Reichel, M.; Scharr, G. Flexural properties of z-pinned composite laminates in seawater environment. J. Mater. Sci. 2014, 49, 8343–8354. [Google Scholar] [CrossRef]
- Li, C.; Yan, Y.; Wang, P.; Qi, D.; Wen, Y. Study on compressive properties of z-pinned laminates in RTD and hygrothermal environment. Chin. J. Aeronaut. 2012, 25, 64–70. [Google Scholar] [CrossRef]
- Steeves, C.A.; Fleck, N.A. In-plane properties of composite laminates with through-thickness pin reinforcement. Int. J. Solids Struct. 2006, 43, 3197–3212. [Google Scholar] [CrossRef] [Green Version]
- Chang, P.; Mouritz, A.P.; Cox, B.N. Flexural properties of z-pinned laminates. Compos. Part A Appl. Sci. Manuf. 2007, 38, 224–251. [Google Scholar] [CrossRef]
- Elrefaey, A.; Takahashi, M.; Ikeuchi, K. Preliminary investigation of friction stir welding aluminum/copper lap joints. Weld. World 2005, 49, 93–101. [Google Scholar] [CrossRef]
- Sun, X.J.; Tao, J.; Guo, X.Z. Bonding properties of interface in Fe/Al clad tube prepared by explosive welding. Trans. Trans. Nonferrous Met. Soc. China 2011, 21, 2175–2180. [Google Scholar] [CrossRef]
- Kimapong, K.; Watanabe, T. Lap joint of A5083 aluminum alloy and SS400 steel by friction stir welding. Mater. Trans. 2005, 46, 835–841. [Google Scholar] [CrossRef]
Materials | Tensile Strength (MPa) | Elastic Modulus (GPa) | Elongation to Fracture (%) | Density (g/cm³) |
---|---|---|---|---|
M40 | 4410 | 377 | 1.2 | 1.76 |
AISI321 | 1905 | 198 | 2 | 7.85 |
Material | Mg | Mn | Si | Fe | Zn | Cu | Ti | Al |
---|---|---|---|---|---|---|---|---|
5A06 Al | 5.8–6.8 | 0.5–0.8 | 0.4 | 0.4 | 0.2 | 0.1 | 0.02–0.1 | Bal. |
Material | Cr | Ni | Ti | Mn | Si | C | S | P | Fe |
---|---|---|---|---|---|---|---|---|---|
AISI321 | 17–19 | 8–11 | 0.5-0.8 | <2.0 | <1.0 | <0.12 | <0.03 | <0.035 | Bal. |
Z-Pin Volume Content (%) | Z-Pin Diameter (mm) | Z-Pin Angle (°) | Z-Pin Spacing (mm) |
---|---|---|---|
0.25 | 0.3 | 90 | 5.3 |
0.5 | 0.3 | 90 | 3.8 |
1 | 0.3 | 90 | 2.7 |
1 | 0.6 | 90 | 5.3 |
1 | 0.9 | 90 | 8.0 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, S.; Zhang, Y.; Sun, P.; Cui, Y.; Wu, G. Microstructure and Flexural Properties of Z-Pinned Carbon Fiber-Reinforced Aluminum Matrix Composites. Materials 2019, 12, 174. https://doi.org/10.3390/ma12010174
Wang S, Zhang Y, Sun P, Cui Y, Wu G. Microstructure and Flexural Properties of Z-Pinned Carbon Fiber-Reinforced Aluminum Matrix Composites. Materials. 2019; 12(1):174. https://doi.org/10.3390/ma12010174
Chicago/Turabian StyleWang, Sian, Yunhe Zhang, Pibo Sun, Yanhong Cui, and Gaohui Wu. 2019. "Microstructure and Flexural Properties of Z-Pinned Carbon Fiber-Reinforced Aluminum Matrix Composites" Materials 12, no. 1: 174. https://doi.org/10.3390/ma12010174
APA StyleWang, S., Zhang, Y., Sun, P., Cui, Y., & Wu, G. (2019). Microstructure and Flexural Properties of Z-Pinned Carbon Fiber-Reinforced Aluminum Matrix Composites. Materials, 12(1), 174. https://doi.org/10.3390/ma12010174