Effect of Hydration and Carbonation Progress on the Porosity and Permeability of Cement Pastes
Abstract
:1. Introduction
1.1. Methods for Measuring the Permeability of Cementitious Composites
1.2. Changes in Porosity Characteristics in the Context of Progressive Hydration and Carbonation of Cement Pastes
2. Experimental Procedures
2.1. Material and Specimen Preparation
2.2. Methods
2.2.1. Gas Permeability
- Q = V/t—the measured gas flow intensity (m3/s);
- Pa—atmospheric pressure (1 bar = 105 Pa);
- P—pressure (absolute) (Pa);
- A—specimen cross-sectional area (m2);
- η—viscosity of the gas; η = 17.15 (Pa·s);
- L—specimen thickness (m).
2.2.2. Open Porosity
- helium porosity (pH) calculated by comparing bulk (envelope) density with true (skeleton) density;
- open porosity determined on the basis of mercury intrusion porosimetry measurements (pMIP);
- open porosity determined on the basis of absorption of water (water saturation) by volume of paste specimens (pws).
- ρbulk—bulk density (g/cm3),
- ρtrue—true density (helium pycnometry) (g/cm3).
2.2.3. Thermogravimetric (TG) Tests
- dehydration (Ldh), including of ettringite, monosulphate, hydrogarnets, the C-S-H phase;
- dehydroxylation (Ldx), primarily of portlandite;
- decarbonation (Ldc) primarily of calcite which appears in the paste as a result of the carbonation, mainly of portlandite but also of the C-S-H phase, hydrogarnets or ettringite.
- Ldx—mass loss in the dehydroxylation range (%),
- MCa(OH)2—molar mass of calcium hydroxide (75.09 g/mol),
- MH2O—molar mass of water (18.02 g/mol).
- Ldc—mass loss in the decarbonation range (%),
- MCaCO3—molar mass of calcium carbonate (100.09 g/mol),
- MCO2—molar mass of carbon dioxide (44.01 g/mol).
- WB—the amount of chemically bound water after time t [%],
- WB∞—the amount of chemically bound water after hydration has been completed [%].
3. Porosity and Permeability Test Results
3.1. Bulk (Envelope) Density and True Density Versus w/c Ratio
3.2. Open Porosity and w/c Ratio
3.3. Gas Permeability and w/c Ratio
4. Results of Tests on the Degree of Hydration and Carbonation
4.1. XRD Test Results
4.2. TG/DTA Test Results
5. Discussion of Study Results
6. Conclusions
Author Contributions
Conflicts of Interest
References
- EN 12390-8 Testing Hardened Concrete—Part 8: Depth of Penetration of Water under Pressure; European Committee for Stadardization: Bruxelles, Belgium, 2009.
- EN 13580 Products and Systems for the Protection and Repair of Concrete Structures—Test Methods—Water Absorption and Resistance to Alkali for Hydrophobic Impregnations; European Committee for Stadardization: Bruxelles, Belgium, 2002.
- EN 1170-6 Precast Concrete Products—Test Method for Glass-Fibre Reinforced Cement—Part 6: Determination of the Absorption of Water by Immersion and Determination of the Dry Density; European Committee for Stadardization: Bruxelles, Belgium, 1999.
- ASTM C1585 Standard Test Method for Measurement of Rate of Absorption of Water by Hydraulic-Cement Concretes; ASTM International: West Conshohocken, PA, USA, 2013.
- DIN 52615 Testing of Thermal Insulating Materials; Determination of Water Vapour (Moisture) Permeability of Construction and Insulating Materials; Deutsches Institut fur Normung: Berlin, Germany, 1987.
- Śliwiński, J.; Tracz, T. Propozycja Sposobu Rejestracji i Opracowania Wyników Badań Przesiąkliwości Betonu Wodą; Monografia 302, Sesja Jubileuszowa: Rozprawy z mechaniki konstrukcji i materiałów, seria Inżynieria Lądowa; Wydawnictwo Politechniki Krakowskiej: Kraków, Poland, 2004; pp. 261–271. [Google Scholar]
- Stormont, J.C. Conduct and interpretation of gas permeability measurements in rock salt. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 1997, 34, 648. [Google Scholar] [CrossRef]
- Zhang, C.L.; Rothfuchs, T. Damage and sealing of clay rocks detected by measurements of gas permeability. Phys. Chem. Earth 2008, 33. [Google Scholar] [CrossRef]
- Takeuchi, S.; Nakashima, S.; Tomiya, A. Permeability measurements of natural and experimental volcanic materials with a simple permeameter: Toward an understanding of magmatic degassing processes. J. Volcanol. Geotherm. Res. 2008, 177, 329–339. [Google Scholar] [CrossRef]
- RILEM Technical Recommendation: Tests for gas permeability of concrete, TC 116-PCD: Permeability of concrete as criterion of its durability. Mater. Struct. 1999, 32, 174–179.
- Winslow, D.; Liu, D. The pore structure of paste in concrete. Cem. Concr. Res. 1990, 20, 227–235. [Google Scholar] [CrossRef]
- Krus, M.; Hansen, K.K.; Künzel, H.M. Porosity and liquid absorption of cement paste. Mater. Struct. 1997, 30, 394–398. [Google Scholar] [CrossRef]
- Hedenblad, G. Use of mercury intrusion porosimetry or helium porosity to predict the moisture transport properties of hardened cement paste. Adv. Cem. Based Mater. 1997, 6, 123–129. [Google Scholar] [CrossRef]
- Cook, R.A.; Hover, K.C. Mercury porosimetry of hardened cement pastes. Cem. Concr. Res. 1999. [Google Scholar] [CrossRef]
- Gallé, C. Effect of drying on cement-based materials pore structure as identified by mercury intrusion porosimetry. Cem. Concr. Res. 2001, 31, 1467–1477. [Google Scholar] [CrossRef]
- Diamond, S. Mercury porosimetry. An inappropriate method for the measurement of pore size distributions in cement-based materials. Cem. Concr. Res. 2000, 30, 1517–1525. [Google Scholar] [CrossRef]
- Nyame, B.K.; Illston, J.M. Capillary pore structure and permeability of hardened cement paste. In Proceedings of the 7th International Congress on the Chemistry of Cement, Paris, France, 30 June–4 July 1980; pp. 181–185. [Google Scholar]
- Chen, X.; Wu, S.; Zhou, J. Experimental study and analytical model for pore structure of hydrated cement paste. Appl. Clay Sci. 2014, 101, 159–167. [Google Scholar] [CrossRef]
- Liu, J.; Yao, S.; Ba, M.; He, Z.; Li, Y. Effects of carbonation on micro structures of hardened cement paste. J. Wuhan Univ. Technol. Mater. Sci. Ed. 2016, 31, 146–150. [Google Scholar] [CrossRef]
- Morandeau, A.; Thiéry, M.; Dangla, P. Impact of accelerated carbonation on OPC cement paste blended with fly ash. Cem. Concr. Res. 2015, 67, 226–236. [Google Scholar] [CrossRef]
- Šavija, B.; Luković, M. Carbonation of cement paste: Understanding, challenges, and opportunities. Constr. Build. Mater. 2016, 117, 285–301. [Google Scholar] [CrossRef]
- Shah, V.; Parashar, A.; Bishnoi, S. Changes in pore structure properties of cement paste and concrete on carbonation. Adv. Constr. Mater. Syst. 2017, 109, 184–197. [Google Scholar] [CrossRef]
- Glinicki, M.A.; Jóźwiak-Niedźwiedzka, D.; Gibas, K.; Dabrowski, M. Influence of blended cements with calcareous fly ash on chloride ion migration and carbonation resistance of concrete for durable structures. Materials 2016, 9. [Google Scholar] [CrossRef]
- Park, S.M.; Seo, J.H.; Lee, H.K. Binder chemistry of sodium carbonate-activated CFBC fly ash. Mater. Struct. Constr. 2018, 51, 1–10. [Google Scholar] [CrossRef]
- Kurdowski, W. Cement and Concrete Chemistry; Springer: Dordrecht, The Netherlands, 2014; ISBN 9789400779457. [Google Scholar]
- Gastaldi, D.; Bertola, F.; Canonico, F.; Buzzi, L.; Mutke, S.; Irico, S.; Paul, G.; Marchese, L.; Boccaleri, E. A chemical/mineralogical investigation of the behavior of sulfoaluminate binders submitted to accelerated carbonation. Cem. Concr. Res. 2018, 109, 30–41. [Google Scholar] [CrossRef]
- Seo, J.H.; Park, S.M.; Lee, H.K. Evolution of the binder gel in carbonation-cured Portland cement in an acidic medium. Cem. Concr. Res. 2018, 109, 81–89. [Google Scholar] [CrossRef]
- Swenson, E.G.; Sereda, P.J. Mechanism of the carbonatation shrinkage of lime and hydrated cement. J. Appl. Chem. 1968, 18, 111–117. [Google Scholar] [CrossRef]
- Chen, J.J.; Thomas, J.J.; Jennings, H.M. Decalcification shrinkage of cement paste. Cem. Concr. Res. 2006, 36, 801–809. [Google Scholar] [CrossRef]
- Sevelsted, T.F.; Skibsted, J. Cement and Concrete Research Carbonation of C–S–H and C–A–S–H samples studied by 13 C, 27 Al and 29 Si MAS NMR spectroscopy. Cem. Concr. Res. 2015, 71, 56–65. [Google Scholar] [CrossRef]
- EN 197-1 Composition, Specification and Conformity Criteria for Common Cements; European Committee for Stadardization: Bruxelles, Belgium, 2012.
- EN 196-1, Methods of Testing Cement—Part 1: Determination of Strength; European Committee for Stadardization: Bruxelles, Belgium, 2006.
- Auroy, M.; Poyet, S.; Le Bescop, P.; Torrenti, J.M.; Charpentier, T.; Moskura, M.; Bourbon, X. Comparison between natural and accelerated carbonation (3% CO2): Impact on mineralogy, microstructure, water retention and cracking. Cem. Concr. Res. 2018, 109, 64–80. [Google Scholar] [CrossRef]
- Wang, T.; Huang, H.; Hu, X.; Fang, M.; Luo, Z.; Guo, R. Accelerated mineral carbonation curing of cement paste for CO2 sequestration and enhanced properties of blended calcium silicate. Chem. Eng. J. 2017, 323, 320–329. [Google Scholar] [CrossRef]
- Shah, V.; Scrivener, K.; Bhattacharjee, B.; Bishnoi, S. Changes in microstructure characteristics of cement paste on carbonation. Cem. Concr. Res. 2018, 109, 184–197. [Google Scholar] [CrossRef]
- Kollek, J.J. The determination of the permeability of concrete to oxygen by the Cembureau method—A recommendation. Mater. Struct. 1989, 22, 225–230. [Google Scholar] [CrossRef]
- RILEM Technical Recommendation 116-PCD Permeability of Concrete as a Criterion of its Durability; RILEM Publications SARL: Delft, The Netherlands, 1999; Volume 32.
- Tracz, T. Open porosity of cement pastes and their gas permeability. Bull. Polish Acad. Sci. Tech. Sci. 2016, 64, 775–783. [Google Scholar] [CrossRef] [Green Version]
- GeoPyc 1360 Operator’s Manual; Micrometrics Instrument Corporation: Norcross, GA, USA, 2001.
- Quantachrome Instruments Ultrapycnometer 1000 Operator’s Manual; Uni-Export Instruments: Warszawa, Poland, 2007.
- Moro, F.; Böhni, H. Ink-bottle effect in mercury intrusion porosimetry of cement-based materials. J. Colloid Interface Sci. 2002, 246, 135–149. [Google Scholar] [CrossRef]
- Park, S.M.; Jang, J.G.; Lee, H.K. Unlocking the role of MgO in the carbonation of alkali-activated slag cement. Inorg. Chem. Front. 2018, 5, 1661–1670. [Google Scholar] [CrossRef]
- Tracz, T.; Śliwiński, J. Influence of type of cement on porosity and permeability of high performance concrete. In Proceedings of the 7th CANMET/ACI International Conference on Durability of Concrete, Montreal, QC, Canada, 28 May–3 June 2006; pp. 601–615. [Google Scholar]
- Śliwiński, J.; Tracz, T. Sorptivity of normal and high performance concrete. Cem. Wapno Bet. 2007, 1, 27–33. [Google Scholar]
- Zdeb, T. Ultra-high performance concrete – properties and technology. Bull. Polish Acad. Sci. Tech. Sci. 2013, 61, 183–193. [Google Scholar] [CrossRef] [Green Version]
- Hager, I. Behaviour of cement concrete at high temperature. Bull. Polish Acad. Sci. Tech. Sci. 2013, 61, 1–10. [Google Scholar] [CrossRef]
- Monteagudo, S.M.; Moragues, A.; Gálvez, J.C.; Casati, M.J.; Reyes, E. The degree of hydration assessment of blended cement pastes by differential thermal and thermogravimetric analysis. Morphological evolution of the solid phases. Thermochim. Acta 2014, 592, 37–51. [Google Scholar] [CrossRef]
- Gameiro, A.; Santos Silva, A.; Veiga, R.; Velosa, A. Hydration products of lime-metakaolin pastes at ambient temperature with ageing. Thermochim. Acta 2012, 535, 36–41. [Google Scholar] [CrossRef]
- Bhatty, J.I. Hydration versus strength in a portland cement developed from domestic mineral wastes—A comparative study. Thermochim. Acta 1986, 106, 93–103. [Google Scholar] [CrossRef]
- Taylor, H.F.W. Cement Chemistry, 2nd ed.; Thomas Telford Publishing: London, UK, 1997; ISBN 978-0727725929. [Google Scholar]
- Wong, H.S.; Buenfeld, N.R. Determining the water–cement ratio, cement content, water content and degree of hydration of hardened cement paste: Method development and validation on paste samples. Cem. Concr. Res. 2009, 39, 957–965. [Google Scholar] [CrossRef] [Green Version]
- Escalante-Garcia, J.I. Nonevaporable water from neat OPC and replacement materials in composite cements hydrated at different temperatures. Cem. Concr. Res. 2003, 33, 1883–1888. [Google Scholar] [CrossRef]
- Pane, I.; Hansen, W. Investigation of blended cement hydration by isothermal calorimetry and thermal analysis. Cem. Concr. Res. 2005, 35, 1155–1164. [Google Scholar] [CrossRef]
- Zeng, Q.; Li, K.; Fen-Chong, T.; Dangla, P. Pore structure characterization of cement pastes blended with high-volume fly-ash. Cem. Concr. Res. 2012, 42, 194–204. [Google Scholar] [CrossRef]
- Thielmann, F. Introduction into the characterisation of porous materials by inverse gas chromatography. J. Chromatogr. A 2004, 1037, 115–123. [Google Scholar] [CrossRef]
- Wang, X.Y. Modeling of hydration, compressive strength, and carbonation of portland-limestone cement (PLC) concrete. Materials 2017, 10. [Google Scholar] [CrossRef] [PubMed]
- Czarnecki, L.; Woyciechowski, P. Modelling of concrete carbonation; is it a process unlimited in time and restricted in space? Bull. Polish Acad. Sci. Tech. Sci. 2015, 63. [Google Scholar] [CrossRef]
- Hou, D.; Li, H.; Zhang, L.; Zhang, J. Nano-scale mechanical properties investigation of C-S-H from hydrated tri-calcium silicate by nano-indentation and molecular dynamics simulation. Constr. Build. Mater. 2018, 189, 265–275. [Google Scholar] [CrossRef]
- Morandeau, A.; Thiéry, M.; Dangla, P. Investigation of the carbonation mechanism of CH and C-S-H in terms of kinetics, microstructure changes and moisture properties. Cem. Concr. Res. 2014, 56, 153–170. [Google Scholar] [CrossRef] [Green Version]
- Hamami, A.A.; Turcry, P.; Aït-Mokhtar, A. Influence of mix proportions on microstructure and gas permeability of cement pastes and mortars. Cem. Concr. Res. 2012, 42, 490–498. [Google Scholar] [CrossRef]
- Garboczi, E.J. Permeability, diffusivity, and microstructural parameters: A critical review. Cem. Concr. Res. 1990, 20, 591–601. [Google Scholar] [CrossRef]
- Katz, A.J.; Thompson, A.H. Quantitative prediction of permeability in porous rock. Phys. Rev. B 1986. [Google Scholar] [CrossRef]
Chemical characteristics (oxide analysis, % by mass) | |||||||||||
SiO2 | Al2O3 | Fe2O3 | CaO | MgO | SO3 | Na2O | K2O | eqNa2O | Cl− | Portland clinker content | |
18.6 | 5.3 | 2.9 | 62.7 | 1.50 | 3.22 | 0.19 | 0.96 | 0.82 | 0.060 | 96 | |
Physical characteristics | |||||||||||
Specific area (Blaine method), m2/kg | True density, g/cm3 | Setting time (minutes) | Compressive strength, MPa | ||||||||
initial | final | after 2 days | after 28 days | ||||||||
340 | 3.09 | 199 | 270 | 29.3 | 55.1 |
w/c Ratio | Properties | |||||
---|---|---|---|---|---|---|
Bulk Density ρbulk (g/cm3) | True Density ρtrue (g/cm3) | Helium Porosity pH (% vol.) | MIP Porosity pMIP (% vol.) | Water Saturation Porosity pWS (% vol.) | Coefficient of Permeability k (10−16 m2) | |
after 90 days | ||||||
0.3 | 1.744 | 2.308 | 24.4 | 17.3 | 31.4 | 2.73 |
0.4 | 1.628 | 2.250 | 27.6 | 20.5 | 36.5 | 3.95 |
0.5 | 1.495 | 2.165 | 30.9 | 23.5 | 41.4 | 10.50 |
0.6 | 1.398 | 2.116 | 33.9 | 26.5 | 44.5 | 24.70 |
after 2 years | ||||||
0.3 | 1.773 | 2.317 | 23.5 | 16.0 | 27.3 | 1.58 |
0.4 | 1.732 | 2.329 | 25.6 | 17.9 | 28.6 | 3.25 |
0.5 | 1.683 | 2.368 | 28.9 | 20.4 | 32.1 | 8.93 |
0.6 | 1.613 | 2.387 | 32.4 | 22.2 | 33.9 | 20.15 |
w/c Ratio | Ldh (%) | Ldx (%) | Ldc (%) | Ca(OH)2 (%) | CaCO3 (%) | α (%) |
---|---|---|---|---|---|---|
after 90 days | ||||||
0.3 | 9.04 | 2.37 | 5.29 | 9.7 | 12.0 | 61.7 |
0.6 | 11.32 | 4.17 | 5.35 | 17.1 | 12.1 | 80.4 |
after 2 years | ||||||
0.3 | 7.16 | 1.60 | 16.44 | 6.6 | 37.3 | 70.5 |
0.6 | 6.74 | 1.70 | 18.93 | 7.7 | 44.8 | 85.7 |
Solid substrates | → | Solid products | ||
Portlandite | → | Calcite | ||
Molar mass (g/mol) | 74.08 | 100.09 | ||
True density (g/cm3) | 2.23 | 2.71 | ||
Molar volume (cm3/mol) | 33.22 | 36.93 | ||
Vproducts/Vsubstrates | 1.11 | |||
Portlandite | → | Aragonite | ||
Molar mass (g/mol) | 74.08 | 100.09 | ||
True density (g/cm3) | 2.23 | 2.93 | ||
Molar volume (cm3/mol) | 33.22 | 34.16 | ||
Vproducts/Vsubstrates | 1.03 | |||
Portlandite | → | Vaterite | ||
Molar mass (g/mol) | 74.08 | 100.09 | ||
True density (g/cm3) | 2.23 | 2.54 | ||
Molar volume (cm3/mol) | 33.22 | 39.41 | ||
Vproducts/Vsubstrates | 1.19 | |||
C3S2H3 phase | → | Calcite | Amorph. silica | |
Molar mass (g/mol) | 342.4 | 100.09 | 60.08 | |
True density (g/cm3) | 2.50 | 2.71 | 2.20 | |
Molar volume (cm3/mol) | 136.96 | 36.93 | 27.31 | |
Vproducts/Vsubstrates | 1.21 | |||
C3S2H3 phase | → | Aragonite | Amorph. silica | |
Molar mass (g/mol) | 342.4 | 100.09 | 60.08 | |
True density (g/cm3) | 2.50 | 2.93 | 2.20 | |
Molar volume (cm3/mol) | 136.96 | 34.16 | 27.31 | |
Vproducts/Vsubstrates | 1.15 | |||
C3S2H3 phase | → | Vaterite | Amorph. silica | |
Molar mass (g/mol) | 342.4 | 100.09 | 60.08 | |
True density (g/cm3) | 2.50 | 2.54 | 2.20 | |
Molar volume (cm3/mol) | 136.96 | 39.41 | 27.31 | |
Vproducts/Vsubstrates | 1.26 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tracz, T.; Zdeb, T. Effect of Hydration and Carbonation Progress on the Porosity and Permeability of Cement Pastes. Materials 2019, 12, 192. https://doi.org/10.3390/ma12010192
Tracz T, Zdeb T. Effect of Hydration and Carbonation Progress on the Porosity and Permeability of Cement Pastes. Materials. 2019; 12(1):192. https://doi.org/10.3390/ma12010192
Chicago/Turabian StyleTracz, Tomasz, and Tomasz Zdeb. 2019. "Effect of Hydration and Carbonation Progress on the Porosity and Permeability of Cement Pastes" Materials 12, no. 1: 192. https://doi.org/10.3390/ma12010192
APA StyleTracz, T., & Zdeb, T. (2019). Effect of Hydration and Carbonation Progress on the Porosity and Permeability of Cement Pastes. Materials, 12(1), 192. https://doi.org/10.3390/ma12010192