Plasmon-Induced Electrocatalysis with Multi-Component Nanostructures
Abstract
:1. Introduction
2. Mechanism of Plasmon-Enhanced Electrocatalysis
2.1. Indirect Mechanism Using Pure Plasmonic Nanostructures
2.2. Direct Mechanism by Promotion of an Electron from the Metal to an Empty Molecular Orbital on the Adsorbate
3. Synthesis of Plasmonic Electrocatalysts: From Single to Multi-Component Nanostructures
3.1. Noble Metals-Based Plasmonic Electrocatalysts
3.2. Metal–Semiconductor Composites
4. Current Trends and Outlook
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Chen, X.; Zhu, H.Y.; Zhao, J.C.; Zheng, Z.F.; Gao, X.P. Visible-light-driven oxidation of organic contaminants in air with gold nanoparticle catalysts on oxide supports. Angew. Chem. Int. Ed. 2008, 47, 5353–5356. [Google Scholar] [CrossRef] [PubMed]
- Wu, K.; Zhu, H.; Liu, Z.; Rodríguez-Córdoba, W.; Lian, T. Ultrafast charge separation and long-lived charge separated state in photocatalytic CdS–Pt nanorod heterostructures. J. Am. Chem. Soc. 2012, 134, 10337–10340. [Google Scholar] [CrossRef] [PubMed]
- Robatjazi, H.; Bahauddin, S.M.; Doiron, C.; Thomann, I. Direct plasmon-driven photoelectrocatalysis. Nano Lett. 2015, 15, 6155–6161. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Nie, X.-G.; Shi, Y.; Zhou, Y.; Xu, J.-J.; Xia, X.-H.; Chen, H.-Y. Direct plasmon-accelerated electrochemical reaction on gold nanoparticles. ACS Nano 2017, 11, 5897–5905. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Zhao, X.-P.; Xu, Q.-Y.; Nie, X.-G.; Younis, M.R.; Liu, W.-Y.; Xia, X.-H. Importance of Hot Spots in Gold Nanostructures on Direct Plasmon-Enhanced Electrochemistry. ACS Appl. Nano Mater. 2018, 1, 5805–5811. [Google Scholar] [CrossRef]
- Wang, C.; Shi, Y.; Yang, D.-R.; Xia, X.-H. Combining plasmonics and electrochemistry at the nanoscale. Curr. Opin. Electrochem. 2017, 7, 95–102. [Google Scholar] [CrossRef]
- Choi, C.H.; Chung, K.; Nguyen, T.-T.; Kim, D.H. Plasmon-mediated electrocatalysis for sustainable energy: From electrochemical conversion of different feedstocks to fuel cell reactions. ACS Energy Lett. 2018, 3, 1415–1433. [Google Scholar] [CrossRef]
- Liu, G.; Li, P.; Zhao, G.; Wang, X.; Kong, J.; Liu, H.; Zhang, H.; Chang, K.; Meng, X.; Kako, T. Promoting active species generation by plasmon-induced hot-electron excitation for efficient electrocatalytic oxygen evolution. J. Am. Chem. Soc. 2016, 138, 9128–9136. [Google Scholar] [CrossRef]
- Xu, J.; Gu, P.; Birch, D.J.; Chen, Y. Plasmon-Promoted Electrochemical Oxygen Evolution Catalysis from Gold Decorated MnO2 Nanosheets under Green Light. Adv. Func. Mater. 2018, 28, 1801573. [Google Scholar] [CrossRef]
- Wang, M.; Wang, P.; Li, C.; Li, H.; Jin, Y. Boosting Electrocatalytic Oxygen Evolution Performance of Ultrathin Co/Ni-MOF Nanosheets via Plasmon-Induced Hot Carriers. ACS Appl. Mater. Interfaces 2018, 10, 37095–37102. [Google Scholar] [CrossRef]
- Chen, D.; Zhang, R.; Wang, R.; Dal Negro, L.; Minteer, S.D. Gold Nanofiber-Based Electrodes for Plasmon-Enhanced Electrocatalysis. J. Electrochem. Soc. 2016, 163, H1132–H1135. [Google Scholar] [CrossRef] [Green Version]
- Rasmussen, M.; Serov, A.; Artyushkova, K.; Chen, D.; Rose, T.C.; Atanassov, P.; Harris, J.M.; Minteer, S.D. Enhancement of Electrocatalytic Oxidation of Glycerol by Plasmonics. ChemElectroChem 2018. [Google Scholar] [CrossRef]
- Lin, S.-C.; Hsu, C.-S.; Chiu, S.-Y.; Liao, T.-Y.; Chen, H.M. Edgeless Ag–Pt Bimetallic Nanocages: In Situ Monitor Plasmon-Induced Suppression of Hydrogen Peroxide Formation. J. Am. Chem. Soc. 2017, 139, 2224–2233. [Google Scholar] [CrossRef] [PubMed]
- Shanker, G.S.; Markad, G.B.; Jagadeeswararao, M.; Bansode, U.; Nag, A. Colloidal Nanocomposite of TiN and N-Doped Few-Layer Graphene for Plasmonics and Electrocatalysis. ACS Energy Lett. 2017, 2, 2251–2256. [Google Scholar] [CrossRef]
- Sil, D.; Gilroy, K.D.; Niaux, A.; Boulesbaa, A.; Neretina, S.; Borguet, E. Seeing is believing: Hot electron based gold nanoplasmonic optical hydrogen sensor. ACS Nano 2014, 8, 7755–7762. [Google Scholar] [CrossRef] [PubMed]
- Szunerits, S.; Boukherroub, R. Sensing using localised surface plasmon resonance sensors. Chem. Commun. 2012, 48, 8999–9010. [Google Scholar] [CrossRef] [PubMed]
- Tabatabaei, M.; McRae, D.; Lagugné-Labarthet, F. Recent advances of plasmon-enhanced spectroscopy at bio-Interfaces Frontiers of Plasmon Enhanced Spectroscopy. ACS Symp. Ser. 2016, 2, 183–207. [Google Scholar]
- Demirel, G.; Usta, H.; Yilmaz, M.; Celik, M.; Alidagi, H.A.; Buyukserin, F. Surface-enhanced Raman spectroscopy (SERS): An adventure from plasmonic metals to organic semiconductors as SERS platforms. J. Mater. Chem. C 2018, 6, 5314–5335. [Google Scholar] [CrossRef]
- Huang, X.; El-Sayed, M.A. Plasmonic photo-thermal therapy (PPTT). Alex. J. Med. 2011, 47, 1–9. [Google Scholar] [CrossRef]
- Golubev, A.A.; Khlebtsov, B.N.; Rodriguez, R.D.; Chen, Y. Plasmonic Heting Plays a dominant role in the plasmon-induced photocatalytic reduction of 4-nitrobenzenethiol. J. Phys. Chem. C 2018, 122, 5657–5663. [Google Scholar] [CrossRef]
- Tian, Y.; Tatsuma, T. Plasmon-induced photoelectrochemistry at metal nanoparticles supported on nanoporous TiO2. Chem. Commun. 2004, 1810–1811. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; He, S.; Guo, W.; Hu, Y.; Huang, J.; Mulcahy, J.R.; Wei, W.D. Surface-plasmon-driven hot electron photochemistry. Chem. Rev. 2017, 118, 2927–2954. [Google Scholar] [CrossRef] [PubMed]
- Knight, M.W.; King, N.S.; Liu, L.; Everitt, H.O.; Nordlander, P.; Halas, N.J. Aluminum for plasmonics. ACS Nano 2013, 8, 834–840. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Kou, X.; Yang, Z.; Ni, W.; Wang, J. Shape-and size-dependent refractive index sensitivity of gold nanoparticles. Langmuir 2008, 24, 5233–5237. [Google Scholar] [CrossRef] [PubMed]
- Lounis, S.D.; Runnerstrom, E.L.; Llordes, A.; Milliron, D.J. Defect chemistry and plasmon physics of colloidal metal oxide nanocrystals. J. Phys. Chem. Lett. 2014, 5, 1564–1574. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.; Wang, J.; Wang, C.; Zhai, T.-T.; Bao, W.-J.; Xu, J.-J.; Xia, X.-H.; Chen, H.-Y. Hot electron of Au nanorods activates the electrocatalysis of hydrogen evolution on MoS2 nanosheets. J. Am. Chem. Soc. 2015, 137, 7365–7370. [Google Scholar] [CrossRef]
- Lv, H.; Li, D.; Strmcnik, D.; Paulikas, A.P.; Markovic, N.M.; Stamenkovic, V.R. Recent advances in the design of tailored nanomaterials for efficient oxygen reduction reaction. Nano Energy 2016, 29, 149–165. [Google Scholar] [CrossRef]
- Aslam, U.; Chavez, S.; Linic, S. Controlling energy flow in multimetallic nanostructures for plasmonic catalysis. Nat. Nanotechnol. 2017, 12, 1000–1005. [Google Scholar] [CrossRef]
- Xu, H.; Song, P.; Fernandez, C.; Wang, J.; Shiraishi, Y.; Wang, C.; Du, Y. Surface plasmon enhanced ethylene glycol electrooxidation based on hollow platinum-silver nanodendrites structures. J. Taiwan Inst. Chem. Eng. 2018, 91, 316–322. [Google Scholar] [CrossRef]
- Yang, H.; He, L.-Q.; Hu, Y.-W.; Lu, X.; Li, G.-R.; Liu, B.; Ren, B.; Tong, Y.; Fang, P.-P. Quantitative Detection of Photothermal and Photoelectrocatalytic Effects Induced by SPR from Au@Pt Nanoparticles. Angew. Chem. Int. Ed. 2015, 54, 11462–11466. [Google Scholar] [CrossRef]
- Guo, X.; Li, X.; Kou, S.; Yang, X.; Hu, X.; Ling, D.; Yang, J. Plasmon-enhanced electrocatalytic hydrogen/oxygen evolution by Pt/Fe–Au nanorods. J. Mater. Chem A 2018, 6, 7364–7369. [Google Scholar] [CrossRef]
- Wei, Y.; Zhao, Z.; Yang, P. Pd-Tipped Au Nanorods for Plasmon-Enhanced Electrocatalytic Hydrogen Evolution with Photoelectric and Photothermal Effects. ChemElectroChem 2018, 5, 778–784. [Google Scholar] [CrossRef]
- Bin, D.; Yang, B.; Zhang, K.; Wang, C.; Wang, J.; Zhong, J.; Feng, Y.; Guo, J.; Du, Y. Design of PdAg hollow nanoflowers through galvanic replacement and their application for ethanol electrooxidation. Chem. Eur. J. 2016, 22, 16642–16647. [Google Scholar] [CrossRef]
- Guo, L.; Liang, K.; Marcus, K.; Li, Z.; Zhou, L.; Mani, P.D.; Chen, H.; Shen, C.; Dong, Y.; Zhai, L.; et al. Enhanced Photoelectrocatalytic Reduction of Oxygen Using Au@TiO2 Plasmonic Film. ACS Appl. Mater. Interfaces 2016, 8, 34970–34977. [Google Scholar] [CrossRef]
- Jin, Z.; Wang, Q.; Zheng, W.; Cui, X. Highly Ordered Periodic Au/TiO2 Hetero-Nanostructures for Plasmon-Induced Enhancement of the Activity and Stability for Ethanol Electro-oxidation. ACS Appl. Mater. Interfaces 2016, 8, 5273–5279. [Google Scholar] [CrossRef]
- Xu, Z.; Yu, J.; Liu, G. Enhancement of ethanol electrooxidation on plasmonic Au/TiO2 nanotube arrays. Electrochem. Commun. 2011, 13, 1260–1263. [Google Scholar] [CrossRef]
- Long, R.; Prezhdo, O.V. Instantaneous generation of charge-seperation state on TiO2 surface sensitized with plasmonic nanoparticles. J. Am. Chem. Soc. 2014, 136, 4343–4354. [Google Scholar] [CrossRef] [PubMed]
- Kang, Y.; Najmaei, S.; Liu, Z.; Bao, Y.; Wang, Y.; Zhu, X.; Halas, N.J.; Nordlander, P.; Ajayan, P.M.; Lou, J.; et al. Plasmonic Hot Electron Induced Structural Phase Transition in a MoS2 Monolayer. Adv. Mater. 2014, 26, 6467–6471. [Google Scholar] [CrossRef] [PubMed]
- Sun, M.; Zhai, C.; Hu, J.; Zhu, M.; Pan, J. Plasmon enhanced electrocatalytic oxidation of ethanol and organic contaminants on gold/copper iodide composites under visible light irradiation. J. Colloid. Interface Sci. 2018, 511, 110–118. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.-E.; Marques Mota, F.; Choi, C.H.; Lu, Y.-R.; Boppella, R.; Dong, C.-L.; Liu, R.-S.; Kim, D.H. Plasmon-Enhanced Electrocatalytic Properties of Rationally Designed Hybrid Nanostructures at a Catalytic Interface. Adv. Mater. Interfaces 2018. [Google Scholar] [CrossRef]
Plasmonic Catalyst | Electrode | Reaction | Electrolyte | Comments | Ref. |
---|---|---|---|---|---|
Noble metal-based plasmonic electrocatalysts | |||||
Au NPs | GCE | glucose oxidation | PBS (pH 13.7) | High alkaline conditions to scavenge holes by OH− | [4] |
Au nanofiber | GCE | ethanol and methanol oxidation | 0.1 M NaOH | Decreased passivation effects | [11] |
Ag–Au NPs | GCE | glycerol oxidation | 0.1 M NaOH | 100% fuel cell power output under visible light | [12] |
Au NPs, Au NRs, Au NSs | GCE | ascorbic acid oxidation | PBS (pH 7.4) | Au NPs have weakest effect | [5] |
Pt–Ag dendrites | GCE | ethylene glycol oxidation | 1.0 M KOH | 1.7-fold increase in catalytic activity under light | [29] |
Au–Pt NPs | FTO | ethanol oxidation | 1.0 M NaOH | 2.6 times enhancement | [30] |
Ag–Pt nanocages | GCE | ORR | 0.1 M KOH | “Hot” electron transfer suppressed formation of peroxide intermediate | [13] |
Pt/Fe–Au NRs | GCE | HER | 0.5 M H2SO4 1.0 M KOH | Photothermal effect results in electrocatalysis enhancement | [31] |
Pd-tipped Au NRs | GCE | HER | 0.5 M H2SO4 | High exchange current density of 1.585 mA/cm2 | [32] |
PdAg hollow nanoflowers | GCE | Ethylene glycol oxidation | 1.0 M KOH | High active surface area of 25.8 m2 g−1 (Pt 9.8 m2 g−1) | [33] |
Plasmonic metal–semiconductor composites | |||||
Au–TiO2 | GCE | ORR | 0.1 M NaOH | Activity of 310 mA mg−1 | [34] |
Au–TiO2 nanotubes | Ti foil | ethanol oxidation | 0.5 M H2SO4 1.0 M KOH | 3.6-fold increase with low Au NPs (1.9 at.%) | [35] |
Au–MnO2 NPs | GCE | OER | 0.1 M KOH | 60-mV overpotential | [9] |
Ni(OH)2–Au | GCE | OER | 1 M KOH | Four-fold enhancement, Tafel slope of 35 mV dec−1 | [8] |
Au–Co/NiMOF | GCE | OER | 1 M KOH | 10-fold increase | [10] |
Au–CuI NPs | GCE | ethanol oxidation and methylene blue (MB) degradation | 1 M KOH | 5.6 (ethanol) and 13 times (MB) enhanced activity. | [39] |
Au–MoS2 | GCE | HER | 0.5 M H2SO4 | ∼three-fold increase, turnover of 8.76 s−1 at 300 mV | [26] |
TiN and doped graphene | GCE | HER | 0.5 M H2SO4 | Attained an HER current density of 10 mA/cm2 at a low overpotential of 161 mV. | [14] |
Au NP@rGO layer@Pd NS | GCE | Water splitting (OER and HER) | 0.1 M KOH | Under visible light irradiation 1.9 and 1.1-fold enhanced HER and OER activity, respectively. | [40] |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Subramanian, P.; Meziane, D.; Wojcieszak, R.; Dumeignil, F.; Boukherroub, R.; Szunerits, S. Plasmon-Induced Electrocatalysis with Multi-Component Nanostructures. Materials 2019, 12, 43. https://doi.org/10.3390/ma12010043
Subramanian P, Meziane D, Wojcieszak R, Dumeignil F, Boukherroub R, Szunerits S. Plasmon-Induced Electrocatalysis with Multi-Component Nanostructures. Materials. 2019; 12(1):43. https://doi.org/10.3390/ma12010043
Chicago/Turabian StyleSubramanian, Palaniappan, Dalila Meziane, Robert Wojcieszak, Franck Dumeignil, Rabah Boukherroub, and Sabine Szunerits. 2019. "Plasmon-Induced Electrocatalysis with Multi-Component Nanostructures" Materials 12, no. 1: 43. https://doi.org/10.3390/ma12010043
APA StyleSubramanian, P., Meziane, D., Wojcieszak, R., Dumeignil, F., Boukherroub, R., & Szunerits, S. (2019). Plasmon-Induced Electrocatalysis with Multi-Component Nanostructures. Materials, 12(1), 43. https://doi.org/10.3390/ma12010043