CO Adsorption Performance of CuCl/Activated Carbon by Simultaneous Reduction–Dispersion of Mixed Cu(II) Salts
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of CuCl/AC Adsorbents
2.3. Adsorbent Characterization
2.4. Adsorption Measurements
3. Results and Discussion
3.1. Characterization of Samples
3.2. Adsorption Selectivities of CO to CO2, CH4, and N2
3.3. Isosteric Heat of Adsorption
3.4. Adsorption Kinetics of CO
3.5. Cycle Adsorption of CO on Cu(Ι)/AC
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Saha, D.; Deng, S. Adsorption equilibria and kinetics of carbon monoxide on zeolite 5A, 13X, MOF-5, and MOF−177. J. Chem. Eng. Data 2009, 54, 2245–2250. [Google Scholar] [CrossRef]
- Wu, X.F.; Fang, X.; Wu, L.; Jackstell, R.; Neumann, H.; Beller, M. Transition-metal-catalyzed carbonylation reactions of olefins and alkynes: A personal account. Acc. Chem. Res. 2014, 47, 1041–1053. [Google Scholar] [CrossRef] [PubMed]
- Heymans, N.; Alban, B.; Moreau, S.; De Weireld, G. Experimental and theoretical study of the adsorption of pure molecules and binary systems containing methane, carbon monoxide, carbon dioxide and nitrogen. Application to the syngas generation. Chem. Eng. Sci. 2011, 66, 3850–3858. [Google Scholar] [CrossRef]
- Harlacher, T.; Melin, T.; Wessling, M. Techno-economic analysis of membrane-based argon recovery in a silicon carbide process. Ind. Eng. Chem. Res. 2013, 52, 10460–10466. [Google Scholar] [CrossRef]
- Zarca, G.; Ortiz, I.; Urtiaga, A. Kinetics of the carbon monoxide reactive uptake by an imidazolium chlorocuprate (I) ionic liquid. Chem. Eng. J. 2014, 252, 298–304. [Google Scholar] [CrossRef]
- Gao, F.; Wang, Y.; Wang, X.; Wang, S. Selective CO adsorbent CuCl/AC prepared using CuCl2 as a precursor by a facile method. RSC Adv. 2016, 6, 34439–34446. [Google Scholar] [CrossRef]
- DeCoste, J.B.; Peterson, G.W. Metal–organic frameworks for air purification of toxic chemicals. Chem. Rev. 2014, 114, 5695–5727. [Google Scholar] [CrossRef]
- Pérez, L.C.; Koski, P.; Ihonen, J.; Sousa, J.M.; Mendes, A. Effect of fuel utilization on the carbon monoxide poisoning dynamics of Polymer Electrolyte Membrane Fuel Cells. J. Power Sources 2014, 258, 122–128. [Google Scholar] [Green Version]
- Romero, E.L.; Wilhite, B.A. Composite catalytic-permselective membranes: Modeling analysis for H2 purification assisted by water–gas-shift reaction. Chem. Eng. J. 2012, 207, 552–563. [Google Scholar] [CrossRef]
- Wang, L.; Zhao, J.; Wang, L.; Yan, T.; Sun, Y.Y.; Zhang, S.B. Titanium-decorated graphene oxide for carbon monoxide capture and separation. Phys. Chem. Chem. Phys. 2011, 13, 21126–21131. [Google Scholar] [CrossRef]
- Sethia, G.; Patel, H.A.; Pawar, R.R.; Bajaj, H.C. Porous synthetic hectorites for selective adsorption of carbon dioxide over nitrogen, methane, carbon monoxide and oxygen. Appl. Clay Sci. 2014, 91, 63–69. [Google Scholar] [CrossRef]
- Sethia, G.; Somani, R.S.; Bajaj, H.C. Adsorption of carbon monoxide, methane and nitrogen on alkaline earth metal ion exchanged zeolite-X: Structure, cation position and adsorption relationship. RSC Adv. 2015, 5, 12773–12781. [Google Scholar] [CrossRef]
- Lopes, F.V.S.; Grande, C.A.; Ribeiro, A.M.; Loureiro, J.M.; Evaggelos, O.; Nikolakis, V.; Rodrigues, A.E. Adsorption of H2, CO2, CH4, CO, N2 and H2O in activated carbon and zeolite for hydrogen production. Sep. Sci. Technol. 2009, 44, 1045–1073. [Google Scholar] [CrossRef]
- Delgado, J.A.; Águeda, V.I.; Uguina, M.A.; Sotelo, J.L.; Brea, P.; Grande, C.A. Adsorption and diffusion of H2, CO, CH4, and CO2 in BPL activated carbon and 13X zeolite: Evaluation of performance in pressure swing adsorption hydrogen purification by simulation. Ind. Eng. Chem. Res. 2014, 53, 15414–15426. [Google Scholar] [CrossRef]
- Bastos-Neto, M.; Moeller, A.; Staudt, R.; Böhm, J.; Gläser, R. Dynamic bed measurements of CO adsorption on microporous adsorbents at high pressures for hydrogen purification processes. Sep. Purif. Technol. 2011, 77, 251–260. [Google Scholar] [CrossRef] [Green Version]
- Grande, C.A.; Lopes, F.V.S.; Ribeiro, A.M.; Loureiro, J.M.; Rodrigues, A.E. Adsorption of off-gases from steam methane reforming (H2, CO2, CH4, CO and N2) on activated carbon. Sep. Sci. Technol. 2008, 43, 1338–1364. [Google Scholar] [CrossRef]
- Tsutaya, H.; Izumi, J. Carbon monoxide adsorption by zeolite. Zeolites 1991, 11, 90. [Google Scholar] [CrossRef]
- Chakarova, K.; Hadjiivanov, K. H-bonding of zeolite hydroxyls with weak bases: FTIR study of CO and N2 adsorption on HD-ZSM-5. J. Phys. Chem. C 2011, 115, 4806–4817. [Google Scholar] [CrossRef]
- Chowdhury, P.; Mekala, S.; Dreisbach, F.; Gumma, S. Adsorption of CO, CO2 and CH4 on Cu-BTC and MIL−101 metal organic frameworks: Effect of open metal sites and adsorbate polarity. Micropor. Mesopor. Mater. 2012, 152, 246–252. [Google Scholar] [CrossRef]
- Mishra, P.; Mekala, S.; Dreisbach, F.; Mandal, B.; Gumma, S. Adsorption of CO2, CO, CH4 and N2 on a zinc based metal organic framework. Sep. Purif. Technol. 2012, 94, 124–130. [Google Scholar] [CrossRef]
- Peng, J.; Xian, S.; Xiao, J.; Huang, Y.; Xia, Q.; Wang, H.; Li, Z. A supported Cu(I)@MIL−100 (Fe) adsorbent with high CO adsorption capacity and CO/N2 selectivity. Chem. Eng. J. 2015, 270, 282–289. [Google Scholar] [CrossRef]
- Gao, F.; Wang, Y.; Wang, S. Selective adsorption of CO on CuCl/Y adsorbent prepared using CuCl2 as precursor: Equilibrium and thermodynamics. Chem. Eng. J. 2016, 290, 418–427. [Google Scholar] [CrossRef]
- Khan, N.A.; Jhung, S.H. Adsorptive removal and separation of chemicals with metal-organic frameworks: Contribution of π-complexation. J. Hazard. Mater. 2017, 325, 198–213. [Google Scholar] [CrossRef]
- Yoon, J.W.; Yoon, T.U.; Kim, E.J.; Kim, A.R.; Jung, T.S.; Han, S.S.; Bae, Y.S. Highly selective adsorption of CO over CO2 in a Cu(I)-chelated porous organic polymer. J. Hazard. Mater. 2018, 341, 321–327. [Google Scholar] [CrossRef]
- Jiang, W.J.; Yin, Y.; Liu, X.Q.; Yin, X.Q.; Shi, Y.Q.; Sun, L.B. Fabrication of supported cuprous sites at low temperatures: An efficient, controllable strategy using vapor-induced reduction. J. Am. Chem. Soc. 2013, 135, 8137–8140. [Google Scholar] [CrossRef]
- Cho, K.; Kim, J.; Beum, H.T.; Jung, T.; Han, S.S. Synthesis of CuCl/Boehmite adsorbents that exhibit high CO selectivity in CO/CO2 separation. J. Hazard. Mater. 2018, 344, 857–864. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, R.T.; Heinzel, J.M. Desulfurization of jet fuel by π-complexation adsorption with metal halides supported on MCM-41 and SBA−15 mesoporous materials. Chem. Eng. Sci. 2008, 63, 356–365. [Google Scholar] [CrossRef]
- Hirai, H.; Wada, K.; Komiyama, M. Active carbon-supported copper (I) chloride as solid adsorbent for carbon monoxide. Bull. Chem. Soc. Jpn. 1986, 59, 2217–2223. [Google Scholar] [CrossRef]
- Hirai, H.; Wada, K.; Kurima, K.; Komiyama, M. Carbon monoxide adsorbent composed of copper (I) chloride and polystyrene resin having amino groups. Bull. Chem. Soc. Jpn. 1986, 59, 2553–2558. [Google Scholar] [CrossRef]
- Tamon, H.; Kitamura, K.; Okazaki, M. Adsorption of carbon monoxide on activated carbon impregnated with metal halide. AIChE J. 1996, 42, 422–430. [Google Scholar] [CrossRef]
- Xie, Y.; Zhang, J.; Qiu, J.; Tong, X.; Fu, J.; Yang, G.; Yan, H.; Tang, Y. Zeolites modified by CuCl for separating CO from gas mixtures containing CO2. Adsorption 1997, 3, 27–32. [Google Scholar] [CrossRef]
- Ma, J.; Li, L.; Ren, J.; Li, R. CO adsorption on activated carbon-supported Cu-based adsorbent prepared by a facile route. Sep. Purif. Technol. 2010, 76, 89–93. [Google Scholar] [CrossRef]
- Bastidas, D.M.; La Iglesia, V.M.; Cano, E.; Fajardo, S.; Bastidas, J.M. Kinetic study of formate compounds developed on copper in the presence of formic acid vapor. J. Electrochem. Soc. 2008, 155, C578–C582. [Google Scholar] [CrossRef]
- Powder Diffraction File (PDF) Database; International Centre for Diffraction Data: Swarthmore, PA, USA, 1988.
- Zhong, L.; Ruiyu, W.; Huayan, Z.; Kechang, X. Preparation of CuIY catalyst using CuCl2 as precursor for vapor phase oxidative carbonylation of methanol to dimethyl carbonate. Fuel 2010, 89, 1339–1343. [Google Scholar] [CrossRef]
- Chen, Y.; Xie, C.; Li, Y.; Song, C.; Bolin, T.B. Sulfur poisoning mechanism of steam reforming catalysts: An X-ray absorption near edge structure (XANES) spectroscopic study. Phys. Chem. Chem. Phys. 2010, 12, 5707–5711. [Google Scholar] [CrossRef]
- Ramli, N.A.S.; Amin, N.A.S. Fe/HY zeolite as an effective catalyst for levulinic acid production from glucose: Characterization and catalytic performance. Appl. Catal. B 2015, 163, 487–498. [Google Scholar] [CrossRef]
- Huang, W.; Zhou, X.; Xia, Q.; Peng, J.; Wang, H.; Li, Z. Preparation and adsorption performance of GrO@Cu-BTC for separation of CO2/CH4. Ind. Eng. Chem. Res. 2014, 53, 11176–11184. [Google Scholar] [CrossRef]
- Magnowski, N.B.K.; Avila, A.M.; Lin, C.C.H.; Shi, M.; Kuznicki, S.M. Extraction of ethane from natural gas by adsorption on modified ETS−10. Chem. Eng. Sci. 2011, 66, 1697–1701. [Google Scholar] [CrossRef]
- Myers, A.L.; Prausnitz, J.M. Thermodynamics of mixed-gas adsorption. AIChE J. 1965, 11, 121–127. [Google Scholar] [CrossRef]
- Hill, T.L. Statistical mechanics of adsorption. V. Thermodynamics and heat of adsorption. J. Chem. Phys. 1949, 17, 520–535. [Google Scholar] [CrossRef]
- Gu, B.; Schmitt, J.; Chen, Z.; Liang, L.; McCarthy, J.F. Adsorption and desorption of natural organic matter on iron oxide: Mechanisms and models. Environ. Sci. Technol. 1994, 28, 38–46. [Google Scholar] [CrossRef]
- Hao, W.; Björkman, E.; Lilliestråle, M.; Hedin, N. Activated carbons prepared from hydrothermally carbonized waste biomass used as adsorbents for CO2. Appl. Energy 2013, 112, 526–532. [Google Scholar] [CrossRef]
- Carlsson, B.; Wettermark, G. Optical properties of metallic copper in relation to the photochromic system CuCl(s) H2O(l). J. Photochem. 1976, 5, 321–328. [Google Scholar] [CrossRef]
- Carlsson, B.; Wettermark, G. The photochromic properties of the system CuCl(s)H2O(l) in relation to the composition of the aqueous solution. J. Photochem. 1979, 11, 403–412. [Google Scholar] [CrossRef]
Samples | SBET (m2/g) | VTotal (cm3/g) | da (nm) | N-Cub (wt %) | Cuc (wt %) | η (%) |
---|---|---|---|---|---|---|
AC | 1082 | 0.571 | 2.11 | / | / | / |
Cu(I)-2/AC | 804 | 0.372 | 1.85 | 10.7 | 10.2 | 72.5 |
Cu(I)-3/AC | 644 | 0.294 | 1.83 | 14.8 | 14.1 | 69.0 |
Cu(I)-4/AC | 505 | 0.223 | 1.76 | 18.3 | 17.5 | 68.9 |
Cu(I)-5/AC | 395 | 0.182 | 1.84 | 21.3 | 20.0 | 58.0 |
Cu(I)-6/AC | 331 | 0.156 | 1.89 | 24.0 | 22.5 | 43.6 |
Adsorbent | Refs. | Ta(K) | Selectivities | ||||||
---|---|---|---|---|---|---|---|---|---|
CO | CO2 | CH4 | N2 | CO/CO2 | CO/CH4 | CO/N2 | |||
5A | [1] | 298 | 26.9 | ||||||
13x | [1,12] | 298 | 13.5 | 102 | 8.9 | 5.0 | 0.1 | 1.5 | 2.7 |
BPL AC | [14] | 298 | 4.4 | 24.4 | 8.5 | 0.2 | 0.5 | ||
AC | [13] | 303 | 11.5 | 58 | 24.8 | 7.4 | 0.2 | 0.5 | 1.6 |
CuCl(5)/Y | [22] | 303 | 66.9 | 24.1 | 6.7 | 1.0 | 2.8 | 10.0 | 66.9 |
Cu(I)/AC | [32] | 298 | 56.0 | 46.2 | 9.6 | 2.5 | 1.2 | 5.8 | 22.4 |
CuCl/NaY | [31] | 303 | 52.0 | 29.3 | 3.9 | 1.8 | 1.7 | 13.3 | 28.8 |
CuCl/13X | [31] | 303 | 84.9 | 53.1 | 1.6 | ||||
Cu(I)-4/AC | This work | 298 | 45.4 | 25.2 | 8.4 | 2.1 | 2.6 | 3.0 | 34.3 |
T(K) | AC | CuCl(I)-4/AC | ||||||
---|---|---|---|---|---|---|---|---|
qm | b | n | R2 | qm | b | n | R2 | |
298 | 10.22 | 1.82 × 10−3 | 0.688 | 0.994 | 51.87 | 0.0945 | 1.095 | 0.999 |
288 | 15.12 | 3.18 × 10−3 | 0.809 | 0.997 | 55.34 | 0.102 | 1.081 | 0.999 |
273 | 20.02 | 5.64 × 10−3 | 0.902 | 0.994 | 60.19 | 0.115 | 1.085 | 0.999 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xue, C.; Hao, W.; Cheng, W.; Ma, J.; Li, R. CO Adsorption Performance of CuCl/Activated Carbon by Simultaneous Reduction–Dispersion of Mixed Cu(II) Salts. Materials 2019, 12, 1605. https://doi.org/10.3390/ma12101605
Xue C, Hao W, Cheng W, Ma J, Li R. CO Adsorption Performance of CuCl/Activated Carbon by Simultaneous Reduction–Dispersion of Mixed Cu(II) Salts. Materials. 2019; 12(10):1605. https://doi.org/10.3390/ma12101605
Chicago/Turabian StyleXue, Cailong, Wenming Hao, Wenping Cheng, Jinghong Ma, and Ruifeng Li. 2019. "CO Adsorption Performance of CuCl/Activated Carbon by Simultaneous Reduction–Dispersion of Mixed Cu(II) Salts" Materials 12, no. 10: 1605. https://doi.org/10.3390/ma12101605
APA StyleXue, C., Hao, W., Cheng, W., Ma, J., & Li, R. (2019). CO Adsorption Performance of CuCl/Activated Carbon by Simultaneous Reduction–Dispersion of Mixed Cu(II) Salts. Materials, 12(10), 1605. https://doi.org/10.3390/ma12101605