Attenuation of a Slow Subsonic A0 Mode Ultrasonic Guided Wave in Thin Plastic Films
Abstract
:1. Introduction
2. Theoretical Analysis
2.1. Theoretical Background for the Measurement of the Attenuation
2.2. Finite Element Modelling
3. Experimental Set-Up
4. Experimental Results
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Hellier, C.J. Handbook of Nondestructive Evaluation, 2nd ed.; McGraw-Hill Companies: New York, NY, USA, 2013; p. 720. [Google Scholar]
- Blitz, J. Electrical and Magnetic Methods of Non-destructive Testing; Springer: Dordrecht, The Netherlands, 1997; p. 261. [Google Scholar]
- Staszewski, W.J.; Boller, C.; Tomlinson, G.R. Health Monitoring of Aerospace Structures: Smart Sensor Technologies and Signal Processing; John Wiley & Sons: Padstow, UK, 2004; p. 266. [Google Scholar]
- Koyama, K.; Hoshikawa, H.; Kojima, G. Eddy Current Nondestructive Testing for Carbon Fiber- Reinforced Composites. J. Pressure Vessel Technol. 2013, 135. [Google Scholar] [CrossRef]
- Luccy, E. Applications of the Infrared Thermography in the Energy Audit of Buildings: A Review. Renew. Sustain. Energy Rev. 2018, 82, 3077–3090. [Google Scholar] [CrossRef]
- Rose, J.L. Ultrasonic Guided Waves in Solid Media; Cambridge University Press: New York, NY, USA, 2014; p. 512. [Google Scholar]
- Pant, S.; Laliberte, J.; Martinez, M.; Rocha, B. Derivation and experimental validation of Lamb wave equations for an n-layered anisotropic composite laminate. Compos. Struct. 2014, 111, 566–579. [Google Scholar] [CrossRef]
- Sharma, S.; Mukherjee, A. Damage detection in submerged plates using ultrasonic guided waves. Sadhana 2014, 39, 1009–1034. [Google Scholar] [CrossRef]
- Karim, M.R.; Mal, A.K. Inversion of leaky Lamb wave data by simplex algorithm. J. Acoust. Soc. Am. 1990, 88, 482–491. [Google Scholar] [CrossRef]
- Prada, C.; Balogun, O.; Murray, T.W. Laser-based ultrasonic generation and detection of zero-group velocity Lamb waves in thin plates. Appl. Phys. Lett. 2005, 87, 194109. [Google Scholar] [CrossRef]
- Yang, L.; Ume, I.C. Inspection of notch depths in thin structures using transmission coefficients of laser-generated Lamb waves. Ultrasonics 2015, 63, 168–173. [Google Scholar] [CrossRef] [PubMed]
- Alkassar, Y.; Agarwal, V.K.; Alshrihi, E. Simulation of Lamb wave modes conversions in thin plate for damage detection. Proc. Eng. 2017, 173, 948–955. [Google Scholar] [CrossRef]
- Cheeke, J. Fundamentals and Applications of Ultrasonic Waves; David, N., Ed.; CRC Press, Taylor & Francis Group: New York, NY, USA, 2012; p. 484. [Google Scholar]
- Bernard, A.; Lowe, M.J.S.; Deschamps, M. Guided waves energy velocity in absorbing and non-absorbing plates. J. Acoust. Soc. Am. 2001, 110, 186–196. [Google Scholar] [CrossRef]
- Mazzotti, M.; Marzani, A.; Bartoli, I. Dispersion analysis of leaky guided waves in fluid-loaded waveguides of generic shape. Ultrasonics 2014, 54, 408–418. [Google Scholar] [CrossRef]
- Kwun, H.; Kim, S.Y.; Choi, M.S.; Walker, S.M. Torsional guided-wave attenuation in coal-tar-enamel-coated, buried piping. NDT&E Int. 2004, 37, 663–665. [Google Scholar]
- Leinov, E.; Lowe, M.J.S.; Cawley, P. Investigation of guided wave propagation and attenuation in pipe buried in sand. J. Sound Vib. 2015, 347, 96–114. [Google Scholar] [CrossRef] [Green Version]
- Gresil, M.; Giurgiutiu, V. Prediction of attenuated guided waves propagation in carbon fiber composites using Rayleigh damping model. J. Intell. Mater. Syst. 2015, 26, 2151–2169. [Google Scholar] [CrossRef]
- Chimenti, D.E. Review of air-coupled ultrasonic materials characterization. Ultrasonics 2014, 54, 1804–1816. [Google Scholar] [CrossRef] [PubMed]
- Kažys, R.; Stolpe, P. Ultrasonic non-destructive on-line estimation of the tensile stiffness of a running paper web. NDT&E Int. 2001, 34, 259–267. [Google Scholar]
- Gomez, T.E.; Gonzalez, B.; Montero, F. Paper characterization by measurement of thickness and plate resonances using air-coupled ultrasound. In Proceedings of the 2002 IEEE Ultrasonics Symposium, Munich, Germany, 8–11 October 2002; pp. 865–868. [Google Scholar]
- Gomez Alvarez-Arenas, T.E.; Soto, D.A. Characterization of mineral paper by air-coupled ultrasonic spectroscopy. Ultrasonics 2012, 52, 794–801. [Google Scholar] [CrossRef]
- Fan, Z.; Jiang, W.; Cai, M.; Wright, W.M.D. The effects of air gap reflections during air-coupled leaky Lamb wave inspection of thin plates. Ultrasonics 2016, 65, 282–295. [Google Scholar] [CrossRef]
- Testoni, N.; De Marchi, L.; Marzani, A. Detection and characterization of delaminations in composite plates via air-coupled probes and warped-domain filtering. Compos. Struct. 2016, 153, 773–781. [Google Scholar] [CrossRef]
- Kažys, R.J.; Mažeika, L.; Šliteris, R.; Šeštokė, J. Air-coupled excitation of a slow A0 mode wave in thin plastic plates by ultrasonic PMN-32%PT array. Sensors 2018, 18, 3156. [Google Scholar]
- Cegla, F.B.; Cawley, P.; Lowe, M.J.S. Material property measurement using the quasi- Scholtte mode- A waveguide sensor. J. Acoust. Soc. Am. 2005, 117, 1098–1107. [Google Scholar] [CrossRef]
- Aubert, V.; Wunenburger, R.; Valier-Brasier, T.; Rabaud, D.; Kleman, J.-P.; Poulain, C. A simple acoustofluidic chip for microscale manipulation using evanescent Scholte waves. Lab Chip. 2016, 16, 2532–2539. [Google Scholar] [CrossRef] [PubMed]
- Bao, X.L.; Franklin, H.; Raju, P.K.; Uberall, H. The splitting of dispersion curves for plates fluid- loaded on both sides. J. Acoust. Soc. Am. 1997, 102, 1246–1248. [Google Scholar] [CrossRef]
- Plastics Europe—Association of Plastics Manufacturers. Plastics—the Facts 2014/2015. An Analysis of European Plastics Production, Demand and Waste Data. Available online: https://www.plasticseurope.org/application/files/5515/1689/9220/2014plastics_the_facts_PubFeb2015.pdf (accessed on 2 April 2019).
- United States Plastics Corporation, Typical Physical Properties: Vintec® Clear PVC. Available online: http://www.usplastic.com/catalog/files/specsheets/Clear%20PVC%20-%20Vycom.pdf (accessed on 10 May 2019).
- Kažys, R.J.; Šliteris, R.; Šeštokė, J. Air-coupled low frequency ultrasonic transducers and arrays with PMN-32%PT piezoelectric crystals. Sensors 2017, 17, 95. [Google Scholar] [CrossRef] [PubMed]
- Lagarias, J.C.; Reeds, J.A.; Wright, M.H.; Wright, P.E. Convergence Properties of the Nelder-Mead Simplex Method in Low Dimensions. SIAM J. Optim. 1998, 9, 112–147. [Google Scholar] [CrossRef]
- Abaqus 6.12. Analysis User‘s Manual. Volume III: Materials. Available online: https://classes.engineering.wustl.edu/2009/spring/mase5513/abaqus/docs/v6.6/books/usb/default.htm?startat=pt05ch20s01abm43.html (accessed on 10 May 2019).
- Piezoelectric PMN-PT Crystal Products. Available online: http://www.hcmat.com/Pmn_Products.html (accessed on 10 May 2019).
- AIREX® T90. Available online: https://www.3accorematerials.com/en/products/airex-foam/airex-t90-fire-resistant-foam (accessed on 10 May 2019).
- OFV-5000 MODULAR VIBROMETER. Available online: https://www.polytec.com/eu/vibrometry/products/single-point-vibrometers/ofv-5000-modular-vibrometer/ (accessed on 10 May 2019).
- Motorized XY Scanning Stage. Available online: http://www.standa.lt/products/catalog/motorised_positioners?item=311&prod=motrized_xy_scanning_stage&print=1 (accessed on 10 May 2019).
- AFG-3000 Series Arbitrary Function Generator. Available online: https://www.gwinstek.com/en-global/products/detail/AFG-3000_Series (accessed on 10 May 2019).
- DAQ/Digitizer: ADQ214—Dual, 14-bit, 400 MSPS, 128 MSamples. Available online: https://spdevices.com/products/hardware/14-bit-digitizers/adq214 (accessed on 10 May 2019).
- Khan, J.G.; Dalu, R.S.; Gadekar, S.S. Defects in extrusion process and their impact on product quality. Int. J. Mech. Eng. Rob. Res. 2014, 3, 187–194. [Google Scholar]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kažys, R.; Šliteris, R.; Mažeika, L.; Tumšys, O.; Žukauskas, E. Attenuation of a Slow Subsonic A0 Mode Ultrasonic Guided Wave in Thin Plastic Films. Materials 2019, 12, 1648. https://doi.org/10.3390/ma12101648
Kažys R, Šliteris R, Mažeika L, Tumšys O, Žukauskas E. Attenuation of a Slow Subsonic A0 Mode Ultrasonic Guided Wave in Thin Plastic Films. Materials. 2019; 12(10):1648. https://doi.org/10.3390/ma12101648
Chicago/Turabian StyleKažys, Rymantas, Reimondas Šliteris, Liudas Mažeika, Olgirdas Tumšys, and Egidijus Žukauskas. 2019. "Attenuation of a Slow Subsonic A0 Mode Ultrasonic Guided Wave in Thin Plastic Films" Materials 12, no. 10: 1648. https://doi.org/10.3390/ma12101648
APA StyleKažys, R., Šliteris, R., Mažeika, L., Tumšys, O., & Žukauskas, E. (2019). Attenuation of a Slow Subsonic A0 Mode Ultrasonic Guided Wave in Thin Plastic Films. Materials, 12(10), 1648. https://doi.org/10.3390/ma12101648