Effect of CaSO4 Incorporation on Pore Structure and Drying Shrinkage of Alkali-Activated Binders
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Specimens Preparation
2.2. Test Methods
3. Experimental Results and Discussion
3.1. Shrinkage of Mortar Specimens
3.2. Effect of CaSO4 Incorporation on the Hydration Product of Paste Specimens
3.3. Effect of CaSO4 Incorporation on Amorphous Gel of Paste Specimens
3.4. The Correlation Between the Pore Structure and Drying Shrinkage of Paste Specimens
4. Concluding Remarks
- An increase in CaSO4 incorporation resulted in an increase in the unreacted slag, and hence, the amount of C-S-H gel decreased.
- An increase in the CaSO4 content increased the number of voids distributed in the mesopore size, thereby decreasing the capillary tension and reducing the drying shrinkage.
- The increase in the quantity of CaSO4 increased the formation of thenardite due to the combination of SO3 and Na ions. Consequently, it can be inferred that the number of SO3 ions needed for ettringite formation decreased.
- The CaSO4 incorporation in AASF contributed to the increase in mesopore size, which may have caused a decrease in drying shrinkage by reducing the capillary tension.
Author Contributions
Funding
Conflicts of Interest
References
- Lee, N.; Jang, J.; Lee, H. Shrinkage characteristics of alkali-activated fly ash/slag paste and mortar at early ages. Cem. Concr. Compos. 2014, 53, 239–248. [Google Scholar] [CrossRef]
- Mehta, K.P. Reducing the environmental impact of concrete. Concr. Int. 2001, 23, 61–66. [Google Scholar]
- Ortega, J.M.; Navarro, P.; Luis, J.; Albaladejo Ruiz, A.; Sánchez, I.; Climent, M.Á. Durability and compressive strength of blast furnace slag-based cement grout for special geotechnical applications. Mater. Constr. 2014, 64, 313. [Google Scholar] [CrossRef]
- Joshaghani, A.; Balapour, M.; Ramezanianpour, A.A. Effect of controlled environmental conditions on mechanical, microstructural and durability properties of cement mortar. Constr. Build. Mater. 2018, 164, 134–149. [Google Scholar] [CrossRef]
- Ortega, J.M.; Esteban, M.D.; Rodríguez, R.R.; Pastor, J.L.; Ibanco, F.J.; Sánchez, I.; Climent, M. Ángel Influence of Silica Fume Addition in the Long-Term Performance of Sustainable Cement Grouts for Micropiles Exposed to a Sulphate Aggressive Medium. Materials 2017, 10, 890. [Google Scholar] [CrossRef]
- Joshaghani, A.; Moeini, M.A.; Balapour, M. Evaluation of incorporating metakaolin to evaluate durability and mechanical properties of concrete. Adv. Concr. Constr. 2017, 5, 241–255. [Google Scholar]
- Bernal, S.A.; De Gutiérrez, R.M.; Pedraza, A.L.; Provis, J.L.; Rodríguez, E.D.; Delvasto, S. Effect of binder content on the performance of alkali-activated slag concretes. Cem. Concr. Res. 2011, 41, 1–8. [Google Scholar] [CrossRef]
- Yang, K.-H.; Song, J.-K.; Song, K.-I. Assessment of CO2 reduction of alkali-activated concrete. J. Clean. Prod. 2013, 39, 265–272. [Google Scholar] [CrossRef]
- Krivenko, P. Alkaline cements: Terminology, classification, aspects of durability. In Proceedings of the 10th Congress on the Chemistry of Cements, Göteborg, Sweden, 2–6 June 1997. [Google Scholar]
- Li, C.; Sun, H.; Li, L. A review: The comparison between alkali-activated slag (Si + Ca) and metakaolin (Si + Al) cements. Cem. Concr. Res. 2010, 40, 1341–1349. [Google Scholar] [CrossRef]
- Deja, J. Immobilization of Cr6+, Cd2+, Zn2+ and Pb2+ in alkali-activated slag binders. Cem. Concr. Res. 2002, 32, 1971–1979. [Google Scholar] [CrossRef]
- Cho, J.; Ioku, K.; Goto, S. Effect of PbII and CrVI ions on the hydration of slag alkaline cement and the immobilization of these heavy metal ions. Adv. Cem. Res. 1999, 11, 111–118. [Google Scholar] [CrossRef]
- Qian, G.; Sun, D.D.; Tay, J.H. Characterization of mercury-and zinc-doped alkali-activated slag matrix: Part I. Mercury. Cem. Concr. Res. 2003, 33, 1251–1256. [Google Scholar] [CrossRef]
- Provis, J.L.; Bernal, S.A. Geopolymers and Related Alkali-Activated Materials. Annu. Revu. Mater. Res. 2014, 44, 299–327. [Google Scholar] [CrossRef]
- Provis, J.L.; Van Deventer, J.S.J. Geopolymers: Structures, Processing, Properties and Industrial Applications; Elsevier: Cambridge, UK, 2009. [Google Scholar]
- Shi, C.; Roy, D.; Krivenko, P.V. Alkali-Activated Cements and Concretes; CRC press: Boca Raton, FL, USA, 2006. [Google Scholar]
- Komnitsas, K.; Zaharaki, D.; Perdikatsis, V. Geopolymerisation of low calcium ferronickel slags. J. Mater. Sci. 2007, 42, 3073–3082. [Google Scholar] [CrossRef]
- Guo, X.; Shi, H.; Dick, W. Use of Heat-Treated Water Treatment Residuals in Fly Ash-Based Geopolymers. J. Am. Ceram. Soc. 2010, 93, 272–278. [Google Scholar] [CrossRef]
- Longhi, M.A.; Rodríguez, E.D.; Bernal, S.A.; Provis, J.L.; Kirchheim, A.P. Valorisation of a kaolin mining waste for the production of geopolymers. J. Clean. Prod. 2016, 115, 265–272. [Google Scholar] [CrossRef]
- Dimas, D.D.; Giannopoulou, I.P.; Panias, D. Utilization of alumina red mud for synthesis of inorganic polymeric materials. Min. Process. Extr. Met. Rev. 2009, 30, 211–239. [Google Scholar] [CrossRef]
- Gong, C.; Yang, N. Effect of phosphate on the hydration of alkali-activated red mud–slag cementitious material. Cem. Concr. Res. 2000, 30, 1013–1016. [Google Scholar] [CrossRef]
- Kumar, A.; Kumar, S. Development of paving blocks from synergistic use of red mud and fly ash using geopolymerization. Constr. Build. Mater. 2013, 38, 865–871. [Google Scholar] [CrossRef]
- LeComte, I.; Henrist, C.; Liégeois, M.; Maseri, F.; Rulmont, A.; Cloots, R. (Micro)-structural comparison between geopolymers, alkali-activated slag cement and Portland cement. J. Eur. Ceram. Soc. 2006, 26, 3789–3797. [Google Scholar] [CrossRef]
- Davidovits, J. Synthesis of new high temperature geo-polymers for reinforced plastics/composites. SPE PACTEC 1979, 79, 151–154. [Google Scholar]
- Davidovits, J. Chemistry of geopolymeric systems, terminology. In Proceedings of the Géopolymère ’99, 2nd International Conference, Saint-Quentin, France, 30 June–2 July 1999; pp. 9–39. [Google Scholar]
- Bakharev, T. Durability of geopolymer materials in sodium and magnesium sulfate solutions. Cem. Concr. Res. 2005, 35, 1233–1246. [Google Scholar] [CrossRef]
- Lee., N.; Lee, H. Reactivity and reaction products of alkali-activated, fly ash/slag paste. Constr. Build. Mater. 2015, 81, 303–312. [Google Scholar] [CrossRef]
- Ramezanianpour, A.; Malhotra, V. Effect of curing on the compressive strength, resistance to chloride-ion penetration and porosity of concretes incorporating slag, fly ash or silica fume. Cem. Concr. Compos. 1995, 17, 125–133. [Google Scholar] [CrossRef]
- Leng, F.; Feng, N.; Lu, X. An experimental study on the properties of resistance to diffusion of chloride ions of fly ash and blast furnace slag concrete. Cem. Concr. Res. 2000, 30, 989–992. [Google Scholar] [CrossRef]
- Wang, X.Y.; Lee, H.S. Modeling the hydration of concrete incorporating fly ash or slag. Cem. Concr. Res. 2010, 40, 984–996. [Google Scholar] [CrossRef]
- Park, H.; Jeong, Y.; Jun, Y.; Jeong, J.-H.; Oh, J.E. Strength enhancement and pore-size refinement in clinker-free CaO-activated GGBFS systems through substitution with gypsum. Cem. Concr. Compos. 2016, 68, 57–65. [Google Scholar] [CrossRef]
- Chang, J.J.; Yeih, W.; Hung, C.C. Effects of gypsum and phosphoric acid on the properties of sodium silicate-based alkali-activated slag pastes. Cem. Concr. Compos. 2005, 27, 85–91. [Google Scholar] [CrossRef]
- Ghosh, A.; Subbarao, C. Microstructural Development in Fly Ash Modified with Lime and Gypsum. J. Mater. Civ. Eng. 2001, 13, 65–70. [Google Scholar] [CrossRef]
- Boonserm, K.; Sata, V.; Pimraksa, K.; Chindaprasirt, P. Improved geopolymerization of bottom ash by incorporating fly ash and using waste gypsum as additive. Cem. Concr. Compos. 2012, 34, 819–824. [Google Scholar] [CrossRef]
- Aimin, X.; Sarkar, S.L. Microstructural study of gypsum activated fly ash hydration in cement paste. Cem. Concr. Res. 1991, 21, 1137–1147. [Google Scholar] [CrossRef]
- Poon, C.; Kou, S.; Lam, L.; Lin, Z. Activation of fly ash/cement systems using calcium sulfate anhydrite (CaSO4). Cem. Concr. Res. 2001, 31, 873–881. [Google Scholar] [CrossRef]
- Neto, A.A.M.; Cincotto, M.A.; Repette, W. Drying and autogenous shrinkage of pastes and mortars with activated slag cement. Cem. Concr. Res. 2008, 38, 565–574. [Google Scholar] [CrossRef]
- Collins, F.; Sanjayan, J. Effect of pore size distribution on drying shrinking of alkali-activated slag concrete. Cem. Concr. Res. 2000, 30, 1401–1406. [Google Scholar] [CrossRef]
- Bernal, S.A.; Provis, J.L.; Walkley, B.; Nicolas, R.S.; Gehman, J.D.; Brice, D.G.; Kilcullen, A.R.; Duxson, P.; Van Deventer, J.S. Gel nanostructure in alkali-activated binders based on slag and fly ash, and effects of accelerated carbonation. Cem. Concr. Res. 2013, 53, 127–144. [Google Scholar] [CrossRef]
- Rodriguez-Navarro, C.; Ruiz-Agudo, E.; Luque, A.; Ortega-Huertas, M. Thermal decomposition of calcite: Mechanisms of formation and textural evolution of CaO nanocrystals. Am. Miner. 2009, 94, 578–593. [Google Scholar] [CrossRef]
- Wang, S.D.; Scrivener, K.L. Hydration products of alkali activated slag cement. Cem. Concr. Res. 1995, 25, 561–571. [Google Scholar] [CrossRef]
- Kim, M.S.; Jun, Y.; Lee, C.; Oh, J.E. Use of CaO as an activator for producing a price-competitive non-cement structural binder using ground granulated blast furnace slag. Cem. Concr. Res. 2013, 54, 208–214. [Google Scholar] [CrossRef]
- Ben Haha, M.; Le Saoût, G.; Winnefeld, F.; Lothenbach, B. Influence of activator type on hydration kinetics, hydrate assemblage and microstructural development of alkali activated blast-furnace slags. Cem. Concr. Res. 2011, 41, 301–310. [Google Scholar] [CrossRef]
- El-Didamony, H.; El-Sokkari, T.M.; KHALIL, K.; Heikal, M.; Ahmed, I.A. Hydration mechanisms of calcium sulphoaluminate C4A3S, C4AS phase and active belite β-C2S. Ceram. Silikaty 2012, 56, 389–395. [Google Scholar]
- Pelletier-Chaignat, L.; Winnefeld, F.; Lothenbach, B.; Le Saout, G.; Müller, C.J.; Famy, C. Influence of the calcium sulphate source on the hydration mechanism of Portland cement–calcium sulphoaluminate clinker–calcium sulphate binders. Cem. Concr. Compo. 2011, 33, 551–561. [Google Scholar] [CrossRef]
- Wang, X.; Pan, Z.; Shen, X.; Liu, W. Stability and decomposition mechanism of ettringite in presence of ammonium sulfate solution. Constr. Build. Mater. 2016, 124, 786–793. [Google Scholar] [CrossRef]
- Christensen, A.N.; Jensen, T.R.; Hanson, J.C. Formation of ettringite, Ca6Al2(SO4)3(OH)12·26H2O, AFt, and monosulfate, Ca4Al2O6(SO4)·14H2O, AFm-14, in hydrothermal hydration of Portland cement and of calcium aluminum oxide—calcium sulfate dihydrate mixtures studied by in situ synchrotron X-ray powder diffraction. J. Solid State Chem. 2004, 177, 1944–1951. [Google Scholar]
- Perera, D.; Uchida, O.; Vance, E.; Finnie, K. Influence of curing schedule on the integrity of geopolymers. J. Mater. Sci. 2007, 42, 3099–3106. [Google Scholar] [CrossRef]
- Cincotto, M.; Melo, A.; Repette, W. Effect of different activators type and dosages and relation to autogenous shrinkage of activated blast furnace slag cement. In Proceedings of the 11th International Congress on the Chemistry of Cement (ICCC), Durban, South Africa, 11–16 May 2003. [Google Scholar]
- Lubda, D.; Lindner, W.; Quaglia, M.; Hohenesche, C.D.F.V.; Unger, K.K. Comprehensive pore structure characterization of silica monoliths with controlled mesopore size and macropore size by nitrogen sorption, mercury porosimetry, transmission electron microscopy and inverse size exclusion chromatography. J. Chromatogr. A 2005, 1083, 14–22. [Google Scholar] [CrossRef] [PubMed]
- Güneyisi, E.; Gesoğlu, M.; Mermerdaş, K. Improving strength, drying shrinkage, and pore structure of concrete using metakaolin. Mater. Struct. 2008, 41, 937–949. [Google Scholar] [CrossRef]
- Aly, T.; Sanjayan, J.G. Effect of Pore-Size Distribution on Shrinkage of Concretes. J. Mater. Civ. Eng. 2010, 22, 525–532. [Google Scholar] [CrossRef]
- Shimomura, T.; Maekawa, K. Analysis of the drying shrinkage behaviour of concrete based on the micropore structure of concrete using a micromechanical model. Mag. Concr. Res. 1997, 49, 303–322. [Google Scholar] [CrossRef]
- Bazant, Z.P.; Wittmann, F.H. Creep and Shrinkage in Concrete Structures; John Wiley & Sons: Hoboken, NJ, USA, 1982. [Google Scholar]
- Palacios, M.; Puertas, F. Effect of shrinkage-reducing admixtures on the properties of alkali-activated slag mortars and pastes. Cem. Concr. Res. 2007, 37, 691–702. [Google Scholar] [CrossRef]
(wt %) | SiO2 | Al2O3 | Fe2O3 | CaO | MgO | P2O5 | TiO2 | K2O | SO3 | LOI a |
---|---|---|---|---|---|---|---|---|---|---|
Fly ash | 50.0 | 21.0 | 10.0 | 4.8 | 1.3 | 1.5 | 1.5 | 1.4 | 1.0 | 2.71 |
Slag | 32.4 | 11.5 | 0.6 | 47.7 | 3.0 | 0.6 | 0.5 | 0.5 | 2.7 | 0.29 |
Specimen Code | Slag | Fly Ash | Gypsum | Water | Sand | W/B a |
---|---|---|---|---|---|---|
G0 | 0.5 | 0.5 | 0 | 0.4 | 2 | 0.40 |
G5 | 0.475 | 0.475 | 0.05 | 0.4 | 2 | 0.40 |
G10 | 0.45 | 0.45 | 0.1 | 0.4 | 2 | 0.40 |
G15 | 0.425 | 0.425 | 0.15 | 0.4 | 2 | 0.40 |
Specimen Code | Porosity (vol %) | Total Pore Area (m2/g) | Average Pore Diameter (nm) |
---|---|---|---|
G0 | 33.35 | 103.791 | 8.1 |
G5 | 33.74 | 77.919 | 11.9 |
G10 | 38.17 | 50.620 | 20.4 |
G15 | 43.05 | 40.908 | 29.7 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Son, H.; Park, S.M.; Seo, J.H.; Lee, H.K. Effect of CaSO4 Incorporation on Pore Structure and Drying Shrinkage of Alkali-Activated Binders. Materials 2019, 12, 1673. https://doi.org/10.3390/ma12101673
Son H, Park SM, Seo JH, Lee HK. Effect of CaSO4 Incorporation on Pore Structure and Drying Shrinkage of Alkali-Activated Binders. Materials. 2019; 12(10):1673. https://doi.org/10.3390/ma12101673
Chicago/Turabian StyleSon, Hyeongmin, Sol Moi Park, Joon Ho Seo, and Haeng Ki Lee. 2019. "Effect of CaSO4 Incorporation on Pore Structure and Drying Shrinkage of Alkali-Activated Binders" Materials 12, no. 10: 1673. https://doi.org/10.3390/ma12101673
APA StyleSon, H., Park, S. M., Seo, J. H., & Lee, H. K. (2019). Effect of CaSO4 Incorporation on Pore Structure and Drying Shrinkage of Alkali-Activated Binders. Materials, 12(10), 1673. https://doi.org/10.3390/ma12101673