Thermal Characterization of Low-Dimensional Materials by Resistance Thermometers
Abstract
:1. Introduction
2. Resistance Thermometers
3. CNT-Based Micro Heat Sinks
4. Graphene-Based Heat Spreaders
5. Hexagonal Boron Nitride Heat Spreaders
6. Summary and Conclusion
Author Contributions
Funding
Conflicts of Interest
References
- Shtein, M.; Nadiv, R.; Buzaglo, M.; Regev, O. Graphene-Based Hybrid Composites for Efficient Thermal Management of Electronic Devices. ACS Appl. Mater. Interfaces. 2015, 7, 23725–23730. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Fisher, T.S. Enhancement of thermal interface materials with carbon nanotube arrays. Int. J. Heat Mass Transfer 2006, 49, 1658–1666. [Google Scholar] [CrossRef]
- Mo, Z.; Morjan, R.; Anderson, J.; Campbell, E.E.B.; Liu, J. Integrated nanotube microcooler for microelectronics applications. In Proceedings of the Electronic Components and Technology, Orlando, FL, UAS, 31 May–3 June 2005; pp. 51–54. [Google Scholar]
- Kim, P.; Shi, L.; Majumdar, A.; McEuen, P.L. Thermal transport measurements of individual multiwalled nanotubes. Phys. Rev. Lett. 2001, 87, 215502-1. [Google Scholar] [CrossRef]
- Wang, Z.; Xie, R.; Bui, C.T.; Liu, D.; Ni, X.; Li, B.; Thong, J.T.L. Thermal Transport in Suspended and Supported Few-Layer Graphene. Nano Lett. 2011, 11, 113–118. [Google Scholar] [CrossRef]
- Choi, D.; Poudel, N.; Park, S.; Akinwande, D.; Cronin, S.B.; Watanabe, K.; Taniguchi, T.; Yao, Z.; Shi, L. Large Reduction of Hot Spot Temperature in Graphene Electronic Devices with Heat-Spreading Hexagonal Boron Nitride. ACS Appl. Mater. Interfaces. 2018, 10, 11101–11107. [Google Scholar] [CrossRef]
- Balandin, A.A.; Ghosh, S.; Bao, W.; Calizo, I.; Teweldebrhan, D.; Miao, F.; Lau, C.N. Superior Thermal Conductivity of Single-Layer Graphene. Nano Lett. 2008, 8, 902–907. [Google Scholar] [CrossRef]
- Han, H.; Zhang, Y.; Wang, N.; Samani, M.K.; Ni, Y.; Mijbil, Z.Y.; Edwards, M.; Xiong, S.; Sääskilahti, K.; Murugesan, M.; et al. Functionalization mediates heat transport in graphene nanoflakes. Nat. Commun. 2016, 7, 11281. [Google Scholar] [Green Version]
- Chen, Z.; Jang, W.; Bao, W.; Lau, C.N.; Dames, C. Thermal contact resistance between graphene and silicon dioxide. Appl. Phys. Lett. 2009, 95, 161910. [Google Scholar] [CrossRef] [Green Version]
- Ramirez, S.; Chan, K.; Hernandez, R.; Recinos, E.; Hernandez, E.; Salgado, R.; Khitun, A.G.; Garay, J.E.; Balandin, A.A. Thermal and magnetic properties of nanostructured densified ferrimagnetic composites with graphene - graphite fillers. Mater. Des. 2017, 118, 75–80. [Google Scholar] [CrossRef] [Green Version]
- Jeon, D.; Kim, S.H.; Choi, W.; Byon, C. An experimental study on the thermal performance of cellulose-graphene-based thermal interface materials. Int. J. Heat Mass Transf. 2019, 132, 944–951. [Google Scholar] [CrossRef]
- Jeppson, K.; Bao, J.; Huang, S.; Zhang, Y.; Sun, S.; Fu, Y.; Liu, J. Hotspot test structures for evaluating carbon nanotube microfin coolers and graphene-like heat spreaders. In Proceedings of the 2016 International Conference on Microelectronic Test Structures (ICMTS), Yokohama, Japan, 28–31 March 2016; pp. 32–36. [Google Scholar]
- Fu, Y.; Wang, T.; Jonsson, O.; Liu, J. Application of through silicon via technology for in situ temperature monitoring on thermal interfaces. J. Micromech. Microeng. 2010, 20, 025027. [Google Scholar] [CrossRef]
- Subrina, S.; Kotchetkov, D.; Balandin, A.A. Heat Removal in Silicon-on-Insulator Integrated Circuits With Graphene Lateral Heat Spreaders. IEEE Electron Device Lett. 2009, 30, 1281–1283. [Google Scholar] [CrossRef]
- Nylander, A.N.; Fu, Y.; Huang, M.; Liu, J. Covalent Anchoring of Carbon Nanotube-Based Thermal Interface Materials Using Epoxy-Silane Monolayers. IEEE Trans. Compon. Packag. Manuf. Technol. 2019, 9, 427–432. [Google Scholar] [CrossRef]
- Cross, R.; Cola, B.A.; Fisher, T.; Xu, X.; Gall, K.; Graham, S. A metallization and bonding approach for high performance carbon nanotube thermal interface materials. Nanotechnology 2010, 21, 445705. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Liu, C.H.; Wu, Y.; Fan, S. Aligned carbon nanotube composite films for thermal management. Adv. Mater. 2005, 17, 1652–1656. [Google Scholar] [CrossRef]
- Biercuk, M.J.; Llaguno, M.C.; Radosavljevic, M.; Hyun, J.K.; Johnson, A.T.; Fischer, J.E. Carbon nanotube composites for thermal management. Appl. Phys. Lett. 2002, 80, 2767. [Google Scholar] [CrossRef]
- Lin, W.; Moon, K.S.; Wong, C.P. A combined process of in situ functionalization and microwave treatment to achieve ultrasmall thermal expansion of aligned carbon Nanotube-Polymer nanocomposites: Toward applications as thermal interface materials. Adv. Mater. 2009, 21, 2421–2424. [Google Scholar] [CrossRef]
- Lu, J.P. Elastic properties of carbon nanotubes and nanoropes. Phys. Rev. Lett. 1997, 79, 1297. [Google Scholar] [CrossRef]
- Yu, M.F.; Lourie, O.; Dyer, M.J.; Moloni, K.; Kelly, T.F.; Ruoff, R.S. Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load. Science 2000, 287, 637–640. [Google Scholar] [CrossRef]
- Fu, Y.; Nabiollahi, N.; Wang, T.; Wang, S.; Hu, Z.; Carlberg, B.; Zhang, Y.; Wang, X.; Liu, J. A complete carbon-nanotube-based on-chip cooling solution with very high heat dissipation capacity. Nanotechnology 2012, 23, 045304. [Google Scholar] [CrossRef]
- Fu, Y.; Qin, Y.; Wang, T.; Chen, S.; Liu, J. Ultrafast Transfer of Metal-Enhanced Carbon Nanotubes at Low Temperature for Large-Scale Electronics Assembly. Adv. Mater. 2010, 22, 5039–5042. [Google Scholar] [CrossRef]
- Fu, Y.; Ye, L.L.; Liu, J. Thick film patterning by lift-off process using double-coated single photoresists. Mater. Lett. 2012, 76, 117–119. [Google Scholar] [CrossRef]
- Balandin, A.A. Thermal properties of graphene and nanostructured carbon materials. Nat. Mater. 2011, 10, 569–581. [Google Scholar] [CrossRef] [Green Version]
- Shahil, K.M.; Balandin, A.A. Graphene–Multilayer Graphene Nanocomposites as Highly Efficient Thermal Interface Materials. Nano Lett. 2012, 12, 861–867. [Google Scholar] [CrossRef]
- Goli, P.; Legedza, S.; Dhar, A.; Salgado, R.; Renteria, J.; Balandin, A.A. Graphene-enhanced hybrid phase change materials for thermal management of Li-ion batteries. J. Power Sources 2014, 248, 37–43. [Google Scholar] [CrossRef] [Green Version]
- Saadah, M.; Hernandez, E.; Balandin, A. Thermal Management of Concentrated Multi-Junction Solar Cells with Graphene-Enhanced Thermal Interface Materials. Appl. Sci. 2017, 7, 589. [Google Scholar] [CrossRef]
- Shtein, M.; Nadiv, R.; Buzaglo, M.; Kahil, K.; Regev, O. Thermally Conductive Graphene-Polymer Composites: Size, Percolation, and Synergy Effects. Chem. Mater. 2015, 27, 2100–2106. [Google Scholar] [CrossRef]
- Gu, J.; Xie, C.; Li, H.; Dang, J.; Geng, W.; Zhang, Q. Thermal percolation behavior of graphene nanoplatelets/polyphenylene sulfide thermal conductivity composites. Polym. Compos. 2014, 35, 1087–1092. [Google Scholar] [CrossRef]
- Li, A.; Zhang, C.; Zhang, Y.F. Thermal Conductivity of Graphene-Polymer Composites: Mechanisms, Properties, and Applications. Polymers 2017, 9, 437. [Google Scholar] [Green Version]
- Yan, Z.; Liu, G.; Khan, J.M.; Balandin, A.A. Graphene quilts for thermal management of high-power GaN transistors. Nat. Commun. 2012, 3, 827. [Google Scholar] [CrossRef] [PubMed]
- Han, N.; Cuong, T.V.; Han, M.; Ryu, B.D.; Chandramohan, S.; Park, J.B.; Kang, J.H.; Park, Y.J.; Ko, K.B.; Kim, H.Y.; et al. Improved heat dissipation in gallium nitride light-emitting diodes with embedded graphene oxide pattern. Nat. Commun. 2013, 4, 1452. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, Z.; Zhang, Y.; Fu, Y.; Yuen, M.M.; Liu, J. Thermal chemical vapor deposition grown graphene heat spreader for thermal management of hot spots. Carbon 2013, 61, 342–348. [Google Scholar] [CrossRef]
- Gao, Z.; Zhang, Y.; Fu, Y.; Yuen, M.; Liu, J. Graphene heat spreader for thermal management of hot spots in electronic packaging. In Proceedings of the 18th International Workshop on THERMal INvestigation of ICs and Systems, Budapest, Hungary, 25–27 September 2012; pp. 1–4. [Google Scholar]
- Zhang, Y.; Han, H.; Wang, N.; Zhang, P.; Fu, Y.; Murugesan, M.; Edwards, M.; Jeppson, K.; Volz, S.; Liu, J. Improved Heat Spreading Performance of Functionalized Graphene in Microelectronic Device Application. Adv. Funct. Mater. 2015, 25, 4430–4435. [Google Scholar] [CrossRef]
- Zhang, Y.; Edwards, M.; Samani, M.K.; Logothetis, N.; Ye, L.; Fu, Y.; Jeppson, K.; Liu, J. Characterization and simulation of liquid phase exfoliated graphene-based films for heat spreading applications. Carbon 2016, 106, 195–201. [Google Scholar] [CrossRef]
- Huang, S.; Zhang, Y.; Sun, S.; Fan, X.; Wang, L.; Fu, Y.; Zhang, Y.; Liu, J. Characterization for graphene as heat spreader using thermal imaging method. In Proceedings of the 2013 14th International Conference on Electronic Packaging Technology, Dalian, China, 11–14 August 2013; pp. 403–408. [Google Scholar]
- Zhou, H.; Zhu, J.; Liu, Z.; Yan, Z.; Fan, X.; Lin, J.; Wang, G.; Yan, Q.; Yu, T.; Ajayan, P.M.; et al. High thermal conductivity of suspended few-layer hexagonal boron nitride sheets. Nano Res. 2014, 7, 1232–1240. [Google Scholar] [CrossRef]
- Lindsay, L.; Broido, D.A. Theory of thermal transport in multilayer hexagonal boron nitride and nanotubes. Phys. Rev. B 2012, 85, 035436. [Google Scholar] [CrossRef]
- Ouyang, T.; Chen, Y.; Xie, Y.; Yang, K.; Bao, Z.; Zhong, J. Thermal transport in hexagonal boron nitride nanoribbons. Nanotechnology 2010, 21, 245701. [Google Scholar] [CrossRef]
- Bao, J.; Jeppson, K.; Edwards, M.; Fu, Y.; Ye, L.; Lu, X.; Liu, J. Synthesis and applications of two-dimensional hexagonal boron nitride in electronics manufacturing. Electron. Mater. Lett. 2016, 12, 1–16. [Google Scholar] [CrossRef]
- Wang, Z.; Iizuka, T.; Kozako, M.; Ohki, Y.; Tanaka, T. Development of epoxy/BN composites with high thermal conductivity and sufficient dielectric breakdown strength part I - sample preparations and thermal conductivity. IEEE Trans. Dielectr. Electr. Insul. 2011, 18, 1963–1972. [Google Scholar] [CrossRef]
- Lei, Y.; Han, Z.; Ren, D.; Pan, H.; Xu, M.; Liu, X. Design of h-BN-Filled Cyanate/Epoxy Thermal Conductive Composite with Stable Dielectric Properties. Macromol. Res. 2018, 26, 602–608. [Google Scholar] [CrossRef]
- Yang, N.; Zeng, X.; Lu, J.; Sun, R.; Wong, C.P. Effect of chemical functionalization on the thermal conductivity of 2D hexagonal boron nitride. Appl. Phys. Lett. 2018, 113, 171904. [Google Scholar] [CrossRef]
- Sun, S.; Bao, J.; Mu, W.; Fu, Y.; Zhang, Y.; Ye, L.; Liu, J. Cooling hot spots by hexagonal boron nitride heat spreaders. In Proceedings of the 2015 IEEE 65th Electronic Components and Technology Conference (ECTC), San Diego, CA, USA, 26–29 May 2015; pp. 1658–1663. [Google Scholar]
- Bao, J.; Zhang, Y.; Huang, S.; Sun, S.; Lu, X.; Fu, Y.; Liu, J. Application of two-dimensional layered hexagonal boron nitride in chip cooling. J. Basic Sci. Eng. 2016, 24, 210–217. [Google Scholar]
- Bao, J.; Edwards, M.; Huang, S.; Zhang, Y.; Fu, Y.; Lu, X.; Yuan, Z.; Jeppson, K.; Liu, J. Two-dimensional hexagonal boron nitride as lateral heat spreader in electrically insulating packaging. J. Phys. D: Appl. Phys. 2016, 49, 265501. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fu, Y.; Cui, G.; Jeppson, K. Thermal Characterization of Low-Dimensional Materials by Resistance Thermometers. Materials 2019, 12, 1740. https://doi.org/10.3390/ma12111740
Fu Y, Cui G, Jeppson K. Thermal Characterization of Low-Dimensional Materials by Resistance Thermometers. Materials. 2019; 12(11):1740. https://doi.org/10.3390/ma12111740
Chicago/Turabian StyleFu, Yifeng, Guofeng Cui, and Kjell Jeppson. 2019. "Thermal Characterization of Low-Dimensional Materials by Resistance Thermometers" Materials 12, no. 11: 1740. https://doi.org/10.3390/ma12111740
APA StyleFu, Y., Cui, G., & Jeppson, K. (2019). Thermal Characterization of Low-Dimensional Materials by Resistance Thermometers. Materials, 12(11), 1740. https://doi.org/10.3390/ma12111740