Surface Characterization and Corrosion Behavior of 90/10 Copper-Nickel Alloy in Marine Environment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Corrosion Test
2.2. Characterization of the Corrosion Product Film
2.2.1. Morphology Observation Analysis by SEM/EDS
2.2.2. Raman Spectroscopy Analysis
2.2.3. XPS Analysis
2.3. Electrochemical Measurement
3. Results and Discussion
3.1. XPS Analysis of the Corrosion Product Layer
3.1.1. Cu2p Spectra
3.1.2. O1s spectra
3.2. Raman Analysis of the Corrosion Product Layer
3.3. Macrostructure Analysis
3.4. Microstructure Analysis
3.5. Polarization Curve Measurements
4. Conclusions
- The corrosion product formed on the surface of the 90/10 Cu-Ni alloy mainly contained CuO, Cu2O and Cu(OH)2. With increasing exposure time, CuCl, CuCl2, and Cu2(OH)3Cl were also formed on the surface, which to some extent protected the alloy from corrosion.
- The corrosion product films on the surface are heterogeneous and fairly porous, as well as all present cracks and exfoliation, which are due to the compactness, high fragility, poor cohesion, and adhesion. More serious local corrosion would occur in the 90/10 Cu-Ni alloy during the process of seawater corrosion.
- Electrochemical results showed that, with the extension of exposure time, the Ecorr shifted to positive direction, while the Icorr shifted to negative, which were due to the inhibitive effect of protective oxide film and corrosion on the Cu surface as a result of decreasing the rate of the anodic reaction and the Cl− attack on the surface.
Author Contributions
Funding
Conflicts of Interest
References
- Yuan, S.J.; Choong, A.M.F.; Pehkonen, S.O. The influence of the marine aerobic Pseudomonas strain on the corrosion of 70/30 Cu-Ni alloy. Corros. Sci. 2007, 49, 4352–4385. [Google Scholar] [CrossRef]
- Yuan, S.J.; Pehkonen, S.O. Surface characterization and corrosion behavior of 70/30 Cu-Ni alloy in pristine and sulfide-containing simulated seawater. Corros. Sci. 2007, 49, 1276–1304. [Google Scholar] [CrossRef]
- Chen, J.L.; Li, Z.; Zhu, A.Y.; Luo, L.Y.; Liang, J. Corrosion behaviour of novel imitation-gold copper alloy with rare earth in 3.5% NaCl solution. Mater. Des. 2012, 34, 618–623. [Google Scholar] [CrossRef]
- Rao, B.V.A.; Kumar, K.C. 5-(3-Aminophenyl)tetrazole—A new corrosion inhibitor for Cu-Ni (90/10) alloy in seawater and sulphide containing seawater. Arab. J. Chem. 2017, 10, S2245–S2259. [Google Scholar]
- Mousavi, M.; Baghgoli, T. Application of interaction energy in quantitative structure-inhibition relationship study of some benzenethiol derivatives on copper corrosion. Corros. Sci. 2016, 105, 170–176. [Google Scholar] [CrossRef]
- Khiati, Z.; Othman, A.A.; Sanchez, M.M. Corrosion inhibition of copper in neutral chloride media by an novel derivative of 1,2,4-triazole. Corros. Sci. 2011, 53, 3092–3099. [Google Scholar] [CrossRef]
- North, R.F.; Pryor, M.J. The influence of corrosion product structure on the corrosion rate of Cu-Ni alloys. Corros. Sci. 1970, 10, 297–311. [Google Scholar] [CrossRef]
- Kong, D.C.; Dong, C.F.; Zheng, Z.R.; Mao, F.X.; Xu, A.N.; Ni, X.Q.; Man, C.; Yao, J.A.; Xiao, K.; Li, X.G. Surface monitoring for pitting evolution into uniform corrosion on Cu-Ni-Zn ternary alloy in alkaline chloride solution: Ex-situ LCM and in-situ SECM. Appl. Surf. Sci. 2018, 440, 245–257. [Google Scholar] [CrossRef]
- Metikoš, M.H.; Babić, R.; Škugor, I.; Grubačet, Z. Copper-nickel alloys modified with thin surface films: Corrosion behaviour in the presence of chloride ions. Corros. Sci. 2011, 53, 347–352. [Google Scholar] [CrossRef]
- Krätschmer, A.; Wallinder, I.O.; Leygraf, C. The evolution of outdoor copper patina. Corros. Sci. 2002, 44, 425–450. [Google Scholar]
- Zhang, X.; Wallinder, I.O.; Leygraf, C. Mechanistic studies of corrosion product flaking on copper and copper-based alloys in marine environments. Corros. Sci. 2014, 85, 15–25. [Google Scholar] [CrossRef] [Green Version]
- Fuente, D.D.L.; Simancas, J.; Morcillo, M. Morphological study of 16-year patinas formed on copper in a wide range of atmospheric exposures. Corros. Sci. 2008, 50, 268–285. [Google Scholar] [CrossRef]
- Strandberg, H.; Johansson, L.G. Some aspects of the atmospheric corrosion of copper in the presence of sodium chloride. J. Electrochem. Soc. 1998, 145, 1093–1100. [Google Scholar] [CrossRef]
- Chen, Z.Y.; Persson, D.; Samie, F.; Zakipour, S.; Leygraf, C. Effect of carbon dioxide on sodium chloride-induced atmospheric corrosion of copper. J. Electrochem. Soc. 2005, 152, B502–B511. [Google Scholar] [CrossRef]
- Xia, T.T.; Zeng, L.F.; Zhang, X.H.; Liu, J.; Zhang, W.L.; Liang, T.X.; Yang, B. Enhanced corrosion resistance of a Cu-10Ni alloy in a 3.5 wt% NaCl solution by means of ultrasonic surface rolling treatment. Surf. Coat. Tech. 2019, 363, 390–399. [Google Scholar] [CrossRef]
- Barry, C.S.; Sharon, S.W. Effect of flow on corrosion of copper-nickel alloys in aerated sea water and in sulfide-polluted sea water. Corrosion 1980, 36, 73–85. [Google Scholar]
- Kear, G.; Barker, B.D.; Stokes, K.; Walsh, F.C. Electrochemical Corrosion Behaviour of 90/10 Cu-Ni Alloy in Chloride-Based Electrolytes. J. Appl. Electrochem. 2004, 34, 659–669. [Google Scholar] [CrossRef]
- Mohan, S.; Rajasekaran, N. Influence of electrolyte pH on composition, corrosion properties and surface morphology of electrodeposited Cu-Ni alloy. Surf. Eng. 2015, 27, 519–523. [Google Scholar] [CrossRef]
- Ghosh, S.K.; Dey, G.K.; Dusane, R.O.; Grover, A.K. Improved pitting corrosion behaviour of electrodeposited nanocrystalline Ni-Cu alloys in 3.0 wt.% NaCl solution. J. Alloy Compd. 2006, 426, 235–243. [Google Scholar] [CrossRef]
- Crousier, J.; Beccaria, A. Behaviour of Cu-Ni alloys in natural sea water and NaCl solution. Mater. Corros. 2015, 41, 185–189. [Google Scholar] [CrossRef]
- Ezuber, H.M.; Shater, A.A. Influence of environmental parameters on the corrosion behavior of 90/10 cupronickel tubes in 3.5% NaCl. Desalin Water Treat. 2015, 57, 1–10. [Google Scholar] [CrossRef]
- Zhou, Q.Y.; Jiang, J.B.; Zhong, Q.D.; Wang, Y.; Li, K.; Liu, H.J. Preparation of Cu-Ni-Fe alloy coating and its evaluation on corrosion behavior in 3.5% NaCl solution. J. Alloy Compd. 2013, 563, 171–175. [Google Scholar] [CrossRef]
- Jeon, W.S.; Shur, C.C.; Kim, J.G.; Han, S.Z.; Ki, Y.S. Effect of Cr on the corrosion resistance of Cu-6Ni-4Sn alloys. J. Alloy Compd. 2008, 455, 358–363. [Google Scholar] [CrossRef]
- Levent, K.; Servet, T. Electrolytic production of Cu-Ni alloys in CaCl2-Cu2S-NiS molten salt. Trans. Nonferrous Met. Soc. China 2018, 28, 2143–2150. [Google Scholar]
- Liang, R.; Aydin, E.; Le, B.S.; Borgne, S.L.; Sunnera, J.; Duncan, K.E.; Suflita, J.M. Anaerobic biodegradation of biofuels and their impact on the corrosion of a Cu-Ni alloy in marine environments. Chemosphere 2018, 195, 427–436. [Google Scholar] [CrossRef] [PubMed]
- Wallinder, I.O.; Zhang, X.; Goidanich, S.; Bozec, N.L.; Herting, G.; Leygraf, C. Corrosion and runoff rates of Cu and three Cu-alloys in marine environments with increasing chloride deposition rate. Sci. Total Environ. 2013, 472C, 681–694. [Google Scholar]
- Ingoa, G.M.; Riccuccia, C.; Guida, G.; Pascucci, M.; Giuliani, C.; Messina, E.; Fierro, G.; Carlo, G.D. Micro-chemical investigation of corrosion products naturally grown on archaeological Cu-based artefacts retrieved from the Mediterranean sea. Appl. Surf. Sci. 2019, 470, 695–706. [Google Scholar] [CrossRef]
- Wu, J.J.; Wang, P.; Zhang, D.; Chen, S.Q.; Sun, Y.; Wu, J.Y. Catalysis of oxygen reduction reaction by an iron-reducing bacterium isolated from marine corrosion product layers. J. Electroanal. Chem. 2016, 774, 83–87. [Google Scholar] [CrossRef]
- Zhong, X.K.; Lu, W.J.; Yang, H.J.; Liu, M.; Zhang, Y.; Liu, H.W.; Hu, J.Y.; Zhang, Z.; Zeng, D.Z. Oxygen corrosion of N80 steel under laboratory conditions simulating high pressure air injection: Analysis of corrosion products. J. Petrol. Sci. Eng. 2019, 172, 162–170. [Google Scholar] [CrossRef]
- Zhu, J.J.; Li, S.H.; Shen, L.N.; Yang, W.L.; Li, Z. Corrosion behavior of novel Cu-Ni-Al-Si alloy with super-high strength in 3.5% NaCl solution. Trans. Nonferrous Met. Soc. China 2017, 27, 1096–1104. [Google Scholar] [CrossRef]
- Huang, X.C.; Lu, H.; Li, D.Y. Understanding the corrosion behavior of isomorphous Cu-Ni alloy from its electron work function. Mater. Chem. Phys. 2016, 173, 238–245. [Google Scholar] [CrossRef]
- Zhang, W.F.; Jin, T.Z.; Lou, W.T.; Li, W.L.; Dai, W. Mechanical properties and corrosion behavior of 5A06 alloy in seawater. IEEE Access 2018, 6, 24952–24961. [Google Scholar] [CrossRef]
- Xiao, Z.; Li, Z.; Zhu, A.Y.; Zhao, Y.Y.; Chen, J.L.; Zhua, Y.T. Surface characterization and corrosion behavior of a novel gold-imitation copper alloy with high tarnish resistance in salt spray environment. Corros. Sci. 2013, 76, 42–51. [Google Scholar] [CrossRef]
- Tan, Y.S.; Srinivasan, M.P.; Pehkonen, S.O.; Chooi, S.Y.M. Effects of ring substituents on the protective properties of self-assembled benzenethiols on copper. Corros. Sci. 2006, 48, 840–862. [Google Scholar] [CrossRef]
- Whelan, C.M.; Kinsella, M.; Hong, M.H.; Maex, K. In-situ cleaning and passivation of oxidized Cu surfaces by alkanethiols and its application to wire bonding. J Electron Mater. 2004, 33, 1005–1011. [Google Scholar] [CrossRef]
- Colina, S.; Beche, E.; Berjoan, R.; Jolibois, H.A. Chambaudet, an XPS and AES study of the free corrosion of Cu-Ni- and Zn-based alloys in synthetic sweat. Corros. Sci. 1999, 41, 1051–1065. [Google Scholar] [CrossRef]
- Mclntyre, N.S.; Cook, M.G. X-ray photoelectron studies on some oxides and hydroxides of cobalt, nickel, and copper. Anal. Chem. 1975, 47, 2208–2213. [Google Scholar] [CrossRef]
- Guo, Q.L.; Huang, H.Z.; Gui, L.L.; Xie, Y.C.; Tang, Y.Q. Studies of CuCl/γ-Al2O3 by XPS, SSIMS and ISS. Acta Phys.-Chim. Sin. 1987, 3, 389–394. [Google Scholar]
- Kear, G.; Barker, B.D.; Walsh, F.C. Electrochemical corrosion of unalloyed copper in chloride media-a critical review. Corros Sci. 2004, 46, 109–135. [Google Scholar] [CrossRef]
- Chuan, X.Y.; Lin, H.J.; Chen, D.Z.; Zhou, X.R. XPS-ESCA research on the atom’s state in the CuCl2 graphite intercalation compound. J. Chin. Ceram. Soc. 1999, 27, 282–286. [Google Scholar]
- Yang, Z.; Zhu, X.; Zhao, Y.; Li, Z.; Xing, Y.; Zhou, K.C. Effect of thermo-mechanical treatments on corrosion behavior of Cu-15Ni-8Sn Alloy in 3.5 wt% NaCl solution. Mater. Chem. Phys. 2017, 199, 54–66. [Google Scholar]
- Awad, N.K.; Ashour, E.A.; Allam, N.K. Unravelling the composition of the surface layers formed on Cu, Cu-Ni, Cu-Zn and Cu-Ni-Zn in clean and polluted environments. Appl. Surf. Sci. 2015, 346, 158–164. [Google Scholar] [CrossRef]
- Luo, Q.; Qin, Z.B.; Wu, Z.; Shen, B.; Liu, L.; Hu, W.B. The Corrosion behavior of Ni-Cu gradient layer on the nickel aluminum-bronze (NAB) alloy. Corros. Sci. 2018, 138, 8–19. [Google Scholar] [CrossRef]
- Badawy, W.A.; Ismail, K.M.; Fathi, A.M. Effect of Ni content on the corrosion behavior of Cu-Ni alloys in neutral chloride solutions. Electrochim. Acta 2005, 50, 3603–3608. [Google Scholar] [CrossRef]
- Carley, A.; Davies, P.; Harikumar, K.; Jones, R.V. A low energy pathway to CuCl2 at Cu(110) surfaces. Phys. Chem. Chem. Phys. 2009, 11, 10899–10907. [Google Scholar] [CrossRef]
- Sanchez, S.R.D.; Berlouis, L.E.A.; Schiffrin, D.J. Difference reflectance spectroscopy of anodic films on copper and copper base alloys. J. Electroanaly Chem. Inter. Electrochem. 1991, 307, 73–86. [Google Scholar] [CrossRef]
- Hamilton, J.C.; Farmer, J.C.; Anderson, R.J. Insitu Raman-spectroscopy of anodic films formed on copper and silver in sodium-hydroxide solution. J. Electrochem. Soc. 1986, 133, 739–745. [Google Scholar] [CrossRef]
- Frost, R.L. Raman spectroscopy of selected copper minerals of significance in corrosion. Spectrochim. Acta Part A 2003, 59, 1195–1204. [Google Scholar] [CrossRef]
- Qin, Z.B.; Wu, Z.; Zen, X.S.; Luo, Q.; Liu, L.; Lu, W.J.; Hu, W.B. Improving corrosion resistance of a nickel-aluminium bronze alloy via nickel ion implantation. Corrosion 2016, 72, 1269–1280. [Google Scholar] [CrossRef]
- Ma, A.L.; Jiang, S.L.; Zheng, Y.G.; Ke, W. Corrosion product film formed on the 90/10 copper-nickel tube in natural seawater: Composition/structure and formation mechanism. Corros. Sci. 2015, 91, 245–261. [Google Scholar] [CrossRef]
- Gouda, V.K.; Selim, I.Z.; Khedr, A.A. Pitting corrosion behavior of Monel-400 alloy in chloride solution. J. Mater. Sci. Technol. 1999, 15, 208–212. [Google Scholar]
- Zhu, X.; Lei, T. Seawater corrosion of 70Cu-30Ni alloy of incomplete recrystallization of intermittent and full immersion. Mater. Corrosion 2001, 52, 368–371. [Google Scholar] [CrossRef]
- Liu, Y.J.; Wang, Z.Y.; Ke, W. Study on influence of native oxide and corrosion products on atmospheric corrosion of pure Al. Corros. Sci. 2014, 80, 169–176. [Google Scholar] [CrossRef]
- Zerbino, J.O.; Mele, M.F.L.D. Electrochemical and ellipsometric study of the oxide films formed on copper in borax solution: Part I: Effect of oxygen. J. Appl. Electrochem. 1997, 27, 335–344. [Google Scholar] [CrossRef]
- Zhang, X.; Chen, Y.Q.; Lei, H.L.; Zhao, S.; Han, F.; Xiang, X.; Zhao, Y.C.; Huang, N.; Wan, G.J. Phytic acid layer template-assisted deposition of TiO2 film on titanium: Surface electronic properties, super-hydrophilicity and bending strength. Mater. Des. 2016, 89, 476–484. [Google Scholar] [CrossRef]
- Kamoun, N.; Jebbari, N.; Belgacem, S.; Bennaceur, R.; Bonnet, J.; Touhari, F.; Lassabatere, L. Structure, surface composition, and electronic properties of CuInS2 and CuIn(1−x)AlxS2. J. Appl. Phys. 2002, 91, 1952–1956. [Google Scholar] [CrossRef]
Ni | Fe | Mn | Zn | P | Si | S | Cu |
---|---|---|---|---|---|---|---|
9.76 | 1.2 | 0.74 | <0.3 | <0.02 | <0.15 | 0.0013 | Bal. |
Valence State | Exposure Time (Days) | Proposed Compounds | Binding Energy (eV) | Intensity Area | Relative Quantity | FWHM 1 (eV) | Ref. |
---|---|---|---|---|---|---|---|
Cu 2p3/2 | 7 | CuO | 933.5 | 3918.2 | 0.432 | 1.617 | [37] |
Cu/Cu2O | 932.6 | 5146.3 | 0.568 | 1.341 | [36] | ||
14 | CuO | 933.5 | 13637.2 | 0.696 | 1.642 | [37] | |
CuCl | 931.9 | 1193.7 | 0.061 | 1.376 | [38] | ||
Cu/Cu2O | 932.5 | 4753.6 | 0.243 | 1.289 | [37] | ||
28 | CuCl2 | 934.5 | 1190.4 | 0.126 | 1.734 | [40] | |
CuO | 933.5 | 4050.1 | 0.427 | 1.518 | [37] | ||
Cu/Cu2O | 932.5 | 4231.2 | 0.447 | 1.385 | [36] | ||
56 | CuCl2 | 934.5 | 850.1 | 0.092 | 1.367 | [40] | |
CuO | 933.5 | 5380.5 | 0.584 | 1.428 | [37] | ||
Cu/Cu2O | 932.4 | 2976.8 | 0.324 | 1.146 | [36] |
Valence State | Exposure Time (Days) | Proposed Compounds | Binding Energy (eV) | Intensity Area | Relative Quantity | FWHM (eV) | Ref. |
---|---|---|---|---|---|---|---|
O1s | 7 | CuO | 530.5 | 12042.5 | 0.430 | 2.048 | [41] |
Cu2O | 531.6 | 8369.92 | 0.299 | 1.609 | [42] | ||
Ni(OH)2/Cu(OH)2 | 532.3 | 7581.14 | 0.271 | 1.720 | [43] | ||
14 | CuO | 530.5 | 8524.94 | 0.310 | 1.592 | [41] | |
Cu2O | 531.6 | 6526.19 | 0.238 | 1.364 | [42] | ||
Ni(OH)2/Cu(OH)2 | 532.3 | 12395.8 | 0.452 | 1.957 | [43] | ||
28 | CuO | 530.5 | 13184.5 | 0.469 | 1.948 | [41] | |
Cu2O | 531.6 | 7977.35 | 0.284 | 1.234 | [42] | ||
Ni(OH)2/Cu(OH)2 | 532.3 | 6964.84 | 0.247 | 1.429 | [43] | ||
56 | CuO | 530.5 | 12647.8 | 0.504 | 2.06 | [41] | |
Cu2O | 531.6 | 3352.98 | 0.133 | 1.035 | [42] | ||
Ni(OH)2/Cu(OH)2 | 532.3 | 9109.82 | 0.363 | 1.674 | [43] |
Corrosion Time (d) | Overall Film Composition (at%) | ||||
---|---|---|---|---|---|
Cu | Ni | O | Cl | Others | |
7 | 44.15 | 6.06 | 44.08 | 2.02 | 3.69 |
14 | 36.46 | 6.19 | 47.80 | 7.01 | 2.54 |
28 | 30.78 | 7.33 | 49.37 | 8.26 | 4.26 |
56 | 30.39 | 5.29 | 51.53 | 8.45 | 4.34 |
Exposure Time (Day) | βa (mV/decade) | βc (mV/decade) | Ecorr (V) | Icorr (μA/cm2) | Rp (KΩ/cm2) |
---|---|---|---|---|---|
0 | 52.3 | −212.3 | −0.249 | 3.812 | 4.786 |
7 | 49.5 | −222.7 | −0.241 | 1.310 | 13.488 |
14 | 51.2 | −228.6 | −0.234 | 1.284 | 14.165 |
28 | 53.5 | −286.6 | −0.224 | 1.129 | 17.359 |
56 | 65.71 | −183.32 | −0.198 | 1.056 | 19.916 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jin, T.; Zhang, W.; Li, N.; Liu, X.; Han, L.; Dai, W. Surface Characterization and Corrosion Behavior of 90/10 Copper-Nickel Alloy in Marine Environment. Materials 2019, 12, 1869. https://doi.org/10.3390/ma12111869
Jin T, Zhang W, Li N, Liu X, Han L, Dai W. Surface Characterization and Corrosion Behavior of 90/10 Copper-Nickel Alloy in Marine Environment. Materials. 2019; 12(11):1869. https://doi.org/10.3390/ma12111869
Chicago/Turabian StyleJin, Tingzhu, Weifang Zhang, Ning Li, Xuerong Liu, Lu Han, and Wei Dai. 2019. "Surface Characterization and Corrosion Behavior of 90/10 Copper-Nickel Alloy in Marine Environment" Materials 12, no. 11: 1869. https://doi.org/10.3390/ma12111869
APA StyleJin, T., Zhang, W., Li, N., Liu, X., Han, L., & Dai, W. (2019). Surface Characterization and Corrosion Behavior of 90/10 Copper-Nickel Alloy in Marine Environment. Materials, 12(11), 1869. https://doi.org/10.3390/ma12111869