Reflection Losses Analysis from Interspacing between the Cells in a Photovoltaic Module Using Novel Encapsulant Materials and Backsheets
Abstract
:1. Introduction
2. Experimental Methodology
2.1. Sample Preparation
2.2. Optical Characterization
2.3. Simulations
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Hanifi, H.; Pfau, C.; Dassler, D.; Schneider, J.; Schindler, S.; Turek, M.; Bagdahn, J. Investigation of cell-to-module (CTM) ratios of PV modules by analysis of loss and gain mechanisms. Photovolt. Int. 2016, 32, 89–99. [Google Scholar]
- Gee, J.M.; Smith, D.D.; Garrett, S.E.; Bode, M.D.; Jimeno, J.C. Back-contact crystalline-silicon solar cells and modules. AIP Conf. Proc. 1999, 462, 348. [Google Scholar] [CrossRef]
- Haedrich, I.; Eitner, U.; Wiese, M.; Wirth, H. Unified methodology for determining CTM ratios: Systematic prediction of module power. Sol. Energy Mater. Sol. Cells 2014, 131, 14–23. [Google Scholar] [CrossRef]
- Hanifi, H.; Dassler, D.; Schneider, J.; Turek, M.; Schindler, S.; Bagdahn, J. Optimized tab width in half-cell modules. Energy Procedia 2016, 92, 52–59. [Google Scholar] [CrossRef]
- Chung, I.; Baek, U.-I.; Moon, I.-S.; Kwon, O.; Bae, K.; Shin, S.; Cho, E.-C.; Lee, W.-J. Analysis of current gain by varying the spacing between cells in a PV module with quantum efficiency measurement. In Proceedings of the Photovoltaic Specialists Conference (PVSC), Austin, TX, USA, 3–8 June 2012. [Google Scholar]
- Abbott, M.; McIntosh, K.; Sudbury, B. Optical loss analysis of pv modules. In Proceedings of the EU PVSEC Proceedings, Munich, Gemany, 20–24 June 2016. [Google Scholar]
- Yang, Y.; Liu, R.; McIntosh, K.R.; Abbott, M.; Sudbury, B.; Holovsky, J.; Ye, F.; Deng, W.; Feng, Z.; Verlinden, P.J. Combining ray tracing with device modeling to evaluate experiments for an optical analysis of crystalline Si solar cells and modules. Energy Procedia 2017, 124, 240–249. [Google Scholar] [CrossRef]
- Sopori, B.; Madjdpour, J.; Zhang, Y.; Chen, W. PV optics: An optical modeling tool for solar cell and module design. In Proceedings of the Electrochemical Society Proceedings, Seattle, WA, USA, 2–6 May 1999. [Google Scholar]
- Beaucarne, G.; Agostinelli, G.; Carnel, L.; Choulat, P.; Dekkers, H.; Depauw, V.; Dross, F.; Duerinckx, F.; Gong, C.; Gordon, I. Thin, thinner, thinnest: An evolutionary vision of crystalline Si technology. In Proceedings of the 21st European Photovoltaic Solar Energy Conference, Dresden, Germany, 4–8 September 2006; pp. 554–559. [Google Scholar]
- Blakers, A.W.; Wang, A.; Milne, A.M.; Zhao, J.; Green, M.A. 22.8% efficient silicon solar cell. Appl. Phys. Lett. 1989, 55, 1363–1365. [Google Scholar] [CrossRef]
- Choulat, P. Above 17% industrial type PERC Solar Cell on thin multi-crystalline silicon substrate. In Proceedings of the 22nd European Photovoltaic Solar Energy Conference and Exhibition, Milan, Italy, 3–7 Septenber 2007. [Google Scholar]
- Glunz, S. New concepts for high-efficiency silicon solar cells. Sol. Energy Mater. Sol. Cells 2006, 90, 3276–3284. [Google Scholar] [CrossRef]
- Kress, A.; Kuhn, R.; Fath, P.; Willeke, G.P.; Bucher, E. Low-cost back contact silicon solar cells. IEEE Trans. Electron Devices 1999, 46, 2000–2004. [Google Scholar] [CrossRef]
- Neu, W.; Kress, A.; Jooss, W.; Fath, P.; Bucher, E. Low-cost multicrystalline back-contact silicon solar cells with screen printed metallization. Sol. Energy Mater. Sol. Cells 2002, 74, 139–146. [Google Scholar] [CrossRef]
- Gee, J.M.; Garrett, S.E.; Morgan, W.P. Simplified module assembly using back-contact crystalline-silicon solar cells. In Proceedings of the Conference Record of the Twenty Sixth IEEE Photovoltaic Specialists Conference-1997, Anaheim, CA, USA, 29 September–3 October 1997. [Google Scholar]
- Forstner, H.; Bandil, S.; Zwegers, M.; Bollen, R.; Coletti, G.; Sinke, W.; Bultman, J.; Wyers, P.; Wertz, R.; Wu, S. International Technology Roadmap for Photovoltaic; Semi: Berlin, Germany, 2014; Available online: https://docplayer.net/23997600-International-technology-roadmap-for-photovoltaic-itrpv-2014-results-international-technology-roadmap-for-photovoltaic-sixth-edition.html (accessed on 9 April 2015).
- Agostinelli, G.; Choulat, P.; Dekkers, H.; De Wolf, S.; Beaucarne, G. Screen printed large area crystalline silicon solar cells on thin substrates. In Proceedings of the 20th EUPVSEC, Barcelona, Spain, 6–10 June 2005; pp. 942–945. [Google Scholar]
- Lee, S. Cost effective process for high-efficiency solar cells. Sol. Energy 2009, 83, 1285–1289. [Google Scholar] [CrossRef]
- Agostinelli, G.; Choulat, P.; Dekkers, H.; Vermariën, E.; Beaucarne, G. Rear surface passivation for industrial solar cells on thin substrates. In Proceedings of the 2006 IEEE 4th World Conference on Photovoltaic Energy Conference, Waikoloa, HI, USA, 7–12 May 2006. [Google Scholar]
- Pern, F. Factors that affect the EVA encapsulant discoloration rate upon accelerated exposure. Sol. Energy Mater. Sol. Cells 1996, 41, 587–615. [Google Scholar] [CrossRef]
- Pern, F.; Czanderna, A.; Emery, K.; Dhere, R. Weathering degradation of EVA encapsulant and the effect of its yellowing on solar cell efficiency. In Proceedings of the Twenty-Second IEEE Photovoltaic Specialists Conference, Las Vegas, NV, USA, 7–11 October 1991. [Google Scholar]
- Pern, F.; Czanderna, A. Characterization of ethylene vinyl acetate (EVA) encapsulant: Effects of thermal processing and weathering degradation on its discoloration. Sol. Energy Mater. Sol. Cells 1992, 25, 3–23. [Google Scholar] [CrossRef]
- Govaerts, J.; Robbelein, J.; Gonzalez, M.; Gordon, I.; Baert, K.; De Wolf, I.; Bossuyt, F.; Van Put, S.; Vanfleteren, J. Developing an advanced module for back-contact solar cells. IEEE Trans. Compon. Packaging Manuf. Technol. 2011, 1, 1319–1327. [Google Scholar] [CrossRef]
- Bandou, F.; Hadj Arab, A.; Belkaid, M.; Rosca, V.; Guichoux, M.; Eerenstein, W.; Roosmalen, J.V.; Logerais, P. Reliability of back-contact MWT modules under hot and humid conditions. Br. J. Appl. Sci. Technol. 2016, 13, 1–10. [Google Scholar] [CrossRef]
- Shamim, A.; Noman, M.; Zubair, M.; Khan, A.D.; Saher, S. A facile approach to determine the unknown refractive index (n) and extinction coefficient (k) of novel encapsulant materials used in back contact PV modules. Appl. Phys. A 2018, 124, 542. [Google Scholar] [CrossRef]
Tedlar | Aluminum Foil | |
---|---|---|
EVA | 54.3% | 71.4% |
Polybutadiene ionomer | 48.81% | 71.18% |
TPO | 48.4% | 70.42% |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shamim, A.; Noman, M.; Khan, A.D. Reflection Losses Analysis from Interspacing between the Cells in a Photovoltaic Module Using Novel Encapsulant Materials and Backsheets. Materials 2019, 12, 2067. https://doi.org/10.3390/ma12132067
Shamim A, Noman M, Khan AD. Reflection Losses Analysis from Interspacing between the Cells in a Photovoltaic Module Using Novel Encapsulant Materials and Backsheets. Materials. 2019; 12(13):2067. https://doi.org/10.3390/ma12132067
Chicago/Turabian StyleShamim, Asma, Muhammad Noman, and Adnan Daud Khan. 2019. "Reflection Losses Analysis from Interspacing between the Cells in a Photovoltaic Module Using Novel Encapsulant Materials and Backsheets" Materials 12, no. 13: 2067. https://doi.org/10.3390/ma12132067
APA StyleShamim, A., Noman, M., & Khan, A. D. (2019). Reflection Losses Analysis from Interspacing between the Cells in a Photovoltaic Module Using Novel Encapsulant Materials and Backsheets. Materials, 12(13), 2067. https://doi.org/10.3390/ma12132067