Biological Scaffolds for Abdominal Wall Repair: Future in Clinical Application?
Abstract
:1. Introduction
2. Biological Scaffolds for Abdominal Wall Repair
2.1. Composite Meshes: Synthetic/Natural Biomaterials
2.2. ECM Biomaterials
2.2.1. Antibacterial Action
2.2.2. Recurrence Rate and Mechanical Strength
2.2.3. Costs and Benefits
2.3. Next-Generation Hybrid Biomaterials
3. Future in Clinical Application
Author Contributions
Funding
Conflicts of Interest
References
- Birindelli, A.; Sartelli, M.; Di Saverio, S.; Coccolini, F.; Ansaloni, L.; van Ramshorst, G.H.; Campanelli, G.; Khokha, V.; Moore, E.E.; Peitzman, A.; et al. 2017 update of the WSES guidelines for emergency repair of complicated abdominal wall hernias. World J. Emerg. Surg. WJES 2017, 12, 37. [Google Scholar] [CrossRef] [PubMed]
- Beadles, C.A.; Meagher, A.D.; Charles, A.G. Trends in emergent hernia repair in the United States. JAMA Surg. 2015, 150, 194–200. [Google Scholar] [CrossRef] [PubMed]
- Sauerland, S.; Walgenbach, M.; Habermalz, B.; Seiler, C.M.; Miserez, M. Laparoscopic versus open surgical techniques for ventral or incisional hernia repair. Cochrane Database Syst. Rev. 2011, CD007781. [Google Scholar] [CrossRef] [PubMed]
- Vorst, A.L.; Kaoutzanis, C.; Carbonell, A.M.; Franz, M.G. Evolution and advances in laparoscopic ventral and incisional hernia repair. World J. Gastrointest. Surg. 2015, 7, 293–305. [Google Scholar] [CrossRef] [PubMed]
- Poulose, B.K.; Shelton, J.; Phillips, S.; Moore, D.; Nealon, W.; Penson, D.; Beck, W.; Holzman, M.D. Epidemiology and cost of ventral hernia repair: Making the case for hernia research. Hernia J. Hernias Abdom. Wall Surg. 2012, 16, 179–183. [Google Scholar] [CrossRef] [PubMed]
- Shubinets, V.; Fox, J.P.; Lanni, M.A.; Tecce, M.G.; Pauli, E.M.; Hope, W.W.; Kovach, S.J.; Fischer, J.P. Incisional Hernia in the United States: Trends in Hospital Encounters and Corresponding Healthcare Charges. Am. Surg. 2018, 84, 118–125. [Google Scholar] [PubMed]
- Kokotovic, D.; Bisgaard, T.; Helgstrand, F. Long-term Recurrence and Complications Associated with Elective Incisional Hernia Repair. JAMA 2016, 316, 1575–1582. [Google Scholar] [CrossRef] [PubMed]
- Luijendijk, R.W.; Hop, W.C.; van den Tol, M.P.; de Lange, D.C.; Braaksma, M.M.; IJzermans, J.N.; Boelhouwer, R.U.; de Vries, B.C.; Salu, M.K.; Wereldsma, J.C.; et al. A comparison of suture repair with mesh repair for incisional hernia. N. Engl. J. Med. 2000, 343, 392–398. [Google Scholar] [CrossRef]
- Ibrahim, A.M.; Vargas, C.R.; Colakoglu, S.; Nguyen, J.T.; Lin, S.J.; Lee, B.T. Properties of meshes used in hernia repair: A comprehensive review of synthetic and biologic meshes. J. Reconstr. Microsurg. 2015, 31, 83–94. [Google Scholar] [CrossRef]
- Todros, S.; Pavan, P.G.; Natali, A.N. Synthetic surgical meshes used in abdominal wall surgery: Part I-materials and structural conformation. J. Biomed. Mater. Res. Part B Appl. Biomater. 2017, 105, 689–699. [Google Scholar] [CrossRef]
- Todros, S.; Pavan, P.G.; Pachera, P.; Natali, A.N. Synthetic surgical meshes used in abdominal wall surgery: Part II-Biomechanical aspects. J. Biomed. Mater. Res. Part B Appl. Biomater. 2017, 105, 892–903. [Google Scholar] [CrossRef] [PubMed]
- Kayaoglu, H.A.; Ozkan, N.; Hazinedaroglu, S.M.; Ersoy, O.F.; Erkek, A.B.; Koseoglu, R.D. Comparison of adhesive properties of five different prosthetic materials used in hernioplasty. J. Investig. Surg. Off. J. Acad. Surg. Res. 2005, 18, 89–95. [Google Scholar] [CrossRef] [PubMed]
- Deeken, C.R.; Matthews, B.D. Ventralight ST and SorbaFix versus Physiomesh and Securestrap in a porcine model. JSLS J. Soc. Laparoendosc. Surg. 2013, 17, 549–559. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Moreno, F.; Perez-Lopez, P.; Sotomayor, S.; Perez-Kohler, B.; Bayon, Y.; Pascual, G.; Bellón, J.M. Comparing the host tissue response and peritoneal behavior of composite meshes used for ventral hernia repair. J. Surg. Res. 2015, 193, 470–482. [Google Scholar] [CrossRef] [PubMed]
- Tandon, A.; Shahzad, K.; Pathak, S.; Oommen, C.M.; Nunes, Q.M.; Smart, N. Parietex Composite mesh versus DynaMesh((R))-IPOM for laparoscopic incisional and ventral hernia repair: A retrospective cohort study. Ann. R. Coll. Surg. Engl. 2016, 98, 568–573. [Google Scholar] [CrossRef] [PubMed]
- Pascual, G.; Sotomayor, S.; Rodriguez, M.; Bayon, Y.; Bellon, J.M. Tissue integration and inflammatory reaction in full-thickness abdominal wall repair using an innovative composite mesh. Hernia J. Hernias Abdom. Wall Surg. 2016, 20, 607–622. [Google Scholar] [CrossRef] [PubMed]
- Arnaud, J.P.; Hennekinne-Mucci, S.; Pessaux, P.; Tuech, J.J.; Aube, C. Ultrasound detection of visceral adhesion after intraperitoneal ventral hernia treatment: A comparative study of protected versus unprotected meshes. Hernia J. Hernias Abdom. Wall Surg. 2003, 7, 85–88. [Google Scholar] [CrossRef]
- Koehler, R.H.; Begos, D.; Berger, D.; Carey, S.; LeBlanc, K.; Park, A.; Ramshaw, B.; Smoot, R.; Voeller, G. Minimal adhesions to ePTFE mesh after laparoscopic ventral incisional hernia repair: Reoperative findings in 65 cases. JSLS J. Soc. Laparoendosc. Surg. 2003, 7, 335–340. [Google Scholar]
- Chelala, E.; Debardemaeker, Y.; Elias, B.; Charara, F.; Dessily, M.; Alle, J.L. Eighty-five redo surgeries after 733 laparoscopic treatments for ventral and incisional hernia: Adhesion and recurrence analysis. Hernia J. Hernias Abdom. Wall Surg. 2010, 14, 123–129. [Google Scholar] [CrossRef]
- Schreinemacher, M.H.; van Barneveld, K.W.; Dikmans, R.E.; Gijbels, M.J.; Greve, J.W.; Bouvy, N.D. Coated meshes for hernia repair provide comparable intraperitoneal adhesion prevention. Surg. Endosc. 2013, 27, 4202–4209. [Google Scholar] [CrossRef]
- Gaffney, L.; Warren, P.; Wrona, E.A.; Fisher, M.B.; Freytes, D.O. Macrophages’ Role in Tissue Disease and Regeneration. Results and problems in cell differentiation. Results Probl. Cell Differ. 2017, 62, 245–271. [Google Scholar] [PubMed]
- Westman, P.C.; Lipinski, M.J.; Luger, D.; Waksman, R.; Bonow, R.O.; Wu, E.; Epstein, S.E. Inflammation as a Driver of Adverse Left Ventricular Remodeling After Acute Myocardial Infarction. J. Am. Coll. Cardiol. 2016, 67, 2050–2060. [Google Scholar] [CrossRef] [PubMed]
- Juban, G.; Chazaud, B. Metabolic regulation of macrophages during tissue repair: Insights from skeletal muscle regeneration. FEBS Lett. 2017, 591, 3007–3021. [Google Scholar] [CrossRef] [PubMed]
- Brown, B.N.; Ratner, B.D.; Goodman, S.B.; Amar, S.; Badylak, S.F. Macrophage polarization: An opportunity for improved outcomes in biomaterials and regenerative medicine. Biomaterials 2012, 33, 3792–3802. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Crapo, P.M.; Gilbert, T.W.; Badylak, S.F. An overview of tissue and whole organ decellularization processes. Biomaterials 2011, 32, 3233–3243. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Costa, A.; Naranjo, J.D.; Londono, R.; Badylak, S.F. Biologic Scaffolds. Cold Spring Harb. Perspect. Med. 2017, 7. [Google Scholar] [CrossRef] [PubMed]
- Dziki, J.L.; Wang, D.S.; Pineda, C.; Sicari, B.M.; Rausch, T.; Badylak, S.F. Solubilized extracellular matrix bioscaffolds derived from diverse source tissues differentially influence macrophage phenotype. J. Biomed. Mater. Res. Part A 2017, 105, 138–147. [Google Scholar] [CrossRef]
- Ghuman, H.; Mauney, C.; Donnelly, J.; Massensini, A.R.; Badylak, S.F.; Modo, M. Biodegradation of ECM hydrogel promotes endogenous brain tissue restoration in a rat model of stroke. Acta Biomater. 2018, 80, 66–84. [Google Scholar] [CrossRef]
- Keane, T.J.; Dziki, J.; Sobieski, E.; Smoulder, A.; Castleton, A.; Turner, N.; White, L.J.; Badylak, S.F. Restoring Mucosal Barrier Function and Modifying Macrophage Phenotype with an Extracellular Matrix Hydrogel: Potential Therapy for Ulcerative Colitis. J. Crohns Colitis 2017, 11, 360–368. [Google Scholar] [CrossRef]
- Sicari, B.M.; Rubin, J.P.; Dearth, C.L.; Wolf, M.T.; Ambrosio, F.; Boninger, M.; Turner, N.J.; Weber, D.J.; Simpson, T.W.; Wyse, A.; et al. An acellular biologic scaffold promotes skeletal muscle formation in mice and humans with volumetric muscle loss. Sci. Transl. Med. 2014, 6, 234ra58. [Google Scholar] [CrossRef]
- Wolf, M.T.; Dearth, C.L.; Ranallo, C.A.; LoPresti, S.T.; Carey, L.E.; Daly, K.A.; Brown, B.N.; Badylak, S.F. Macrophage polarization in response to ECM coated polypropylene mesh. Biomaterials 2014, 35, 6838–6849. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, Y.; Wang, J.; Shi, Y.; Pu, H.; Leak, R.K.; Liou, A.K.F.; Badylak, S.F.; Liu, Z.; Zhang, J.; Chen, J.; et al. Implantation of Brain-Derived Extracellular Matrix Enhances Neurological Recovery after Traumatic Brain Injury. Cell Transplant. 2017, 26, 1224–1234. [Google Scholar] [CrossRef] [PubMed]
- Agrawal, V.; Kelly, J.; Tottey, S.; Daly, K.A.; Johnson, S.A.; Siu, B.F.; Reing, J.; Badylak, S.F. An isolated cryptic peptide influences osteogenesis and bone remodeling in an adult mammalian model of digit amputation. Tissue Eng. Part A 2011, 17, 3033–3044. [Google Scholar] [CrossRef] [PubMed]
- Agrawal, V.; Tottey, S.; Johnson, S.A.; Freund, J.M.; Siu, B.F.; Badylak, S.F. Recruitment of progenitor cells by an extracellular matrix cryptic peptide in a mouse model of digit amputation. Tissue Eng. Part A 2011, 17, 2435–2443. [Google Scholar] [CrossRef]
- Fercana, G.R.; Yerneni, S.; Billaud, M.; Hill, J.C.; VanRyzin, P.; Richards, T.D.; Sicari, B.M.; Johnson, S.A.; Badylak, S.F.; Campbell, P.G.; et al. Perivascular extracellular matrix hydrogels mimic native matrix microarchitecture and promote angiogenesis via basic fibroblast growth factor. Biomaterials 2017, 123, 142–154. [Google Scholar] [CrossRef] [Green Version]
- Hammond, J.S.; Gilbert, T.W.; Howard, D.; Zaitoun, A.; Michalopoulos, G.; Shakesheff, K.M.; Beckingham, I.J.; Badylak, S.F. Scaffolds containing growth factors and extracellular matrix induce hepatocyte proliferation and cell migration in normal and regenerating rat liver. J. Hepatol. 2011, 54, 279–287. [Google Scholar] [CrossRef]
- Badylak, S.F.; Wu, C.C.; Bible, M.; McPherson, E. Host protection against deliberate bacterial contamination of an extracellular matrix bioscaffold versus Dacron mesh in a dog model of orthopedic soft tissue repair. J. Biomed. Mater. Res. Part B Appl. Biomater. 2003, 67, 648–654. [Google Scholar] [CrossRef]
- Brennan, E.P.; Reing, J.; Chew, D.; Myers-Irvin, J.M.; Young, E.J.; Badylak, S.F. Antibacterial activity within degradation products of biological scaffolds composed of extracellular matrix. Tissue Eng. 2006, 12, 2949–2955. [Google Scholar] [CrossRef]
- Harth, K.C.; Broome, A.M.; Jacobs, M.R.; Blatnik, J.A.; Zeinali, F.; Bajaksouzian, S.; Rosen, M.J. Bacterial clearance of biologic grafts used in hernia repair: An experimental study. Surg. Endosc. 2011, 25, 2224–2229. [Google Scholar] [CrossRef]
- Medberry, C.J.; Tottey, S.; Jiang, H.; Johnson, S.A.; Badylak, S.F. Resistance to infection of five different materials in a rat body wall model. J. Surg. Res. 2012, 173, 38–44. [Google Scholar] [CrossRef]
- Cole, W.C.; Balent, E.M.; Masella, P.C.; Kajiura, L.N.; Matsumoto, K.W.; Pierce, L.M. An experimental comparison of the effects of bacterial colonization on biologic and synthetic meshes. Hernia J. Hernias Abdom. Wall Surg. 2015, 19, 197–205. [Google Scholar] [CrossRef] [PubMed]
- Koscielny, A.; Widenmayer, S.; May, T.; Kalff, J.; Lingohr, P. Comparison of biological and alloplastic meshes in ventral incisional hernia repair. Langenbecks Arch. Surg. 2018, 403, 255–263. [Google Scholar] [CrossRef]
- Majumder, A.; Winder, J.S.; Wen, Y.; Pauli, E.M.; Belyansky, I.; Novitsky, Y.W. Comparative analysis of biologic versus synthetic mesh outcomes in contaminated hernia repairs. Surgery 2016, 160, 828–838. [Google Scholar] [CrossRef] [PubMed]
- Gossetti, F.; Grimaldi, M.R.; Ceci, F.; D’Amore, L.; Negro, P. Comment on: Comparative analysis of biologic versus synthetic mesh outcomes in contaminated hernia repairs. Surgery 2017, 161, 1467–1468. [Google Scholar] [CrossRef]
- Maxwell, D.W.; Hart, A.M.; Keifer, O.P., Jr.; Halani, S.H.; Losken, A. A Comparison of Acellular Dermal Matrices in Abdominal Wall Reconstruction. Ann. Plast. Surg. 2019, 82, 435–440. [Google Scholar] [CrossRef] [PubMed]
- Huntington, C.R.; Cox, T.C.; Blair, L.J.; Schell, S.; Randolph, D.; Prasad, T.; Lincourt, A.; Heniford, B.T.; Augenstein, V.A. Biologic mesh in ventral hernia repair: Outcomes, recurrence, and charge analysis. Surgery 2016, 160, 1517–1527. [Google Scholar] [CrossRef]
- Costa, A.; Naranjo, J.D.; Turner, N.J.; Swinehart, I.T.; Kolich, B.D.; Shaffiey, S.A.; Londono, R.; Keane, T.J.; Reing, J.E.; Johnson, S.A. Mechanical strength vs. degradation of a biologically-derived surgical mesh over time in a rodent full thickness abdominal wall defect. Biomaterials 2016, 108, 81–90. [Google Scholar] [CrossRef]
- Kubow, K.E.; Klotzsch, E.; Smith, M.L.; Gourdon, D.; Little, W.C.; Vogel, V. Crosslinking of cell-derived 3D scaffolds up-regulates the stretching and unfolding of new extracellular matrix assembled by reseeded cells. Integrative biology: Quantitative biosciences from nano to macro. Integr. Biol. (Camb.) 2009, 1, 635–648. [Google Scholar] [CrossRef]
- Ma, B.; Wang, X.; Wu, C.; Chang, J. Crosslinking strategies for preparation of extracellular matrix-derived cardiovascular scaffolds. Regen. Biomater. 2014, 1, 81–89. [Google Scholar] [CrossRef] [Green Version]
- Chan, J.C.Y.; Burugapalli, K.; Huang, Y.S.; Kelly, J.L.; Pandit, A. Cross-Linked Cholecyst-Derived Extracellular Matrix for Abdominal Wall Repair. Tissue Eng. Part A 2018, 24, 1190–1206. [Google Scholar] [CrossRef]
- de Castro Bras, L.E.; Shurey, S.; Sibbons, P.D. Evaluation of crosslinked and non-crosslinked biologic prostheses for abdominal hernia repair. Hernia J. Hernias Abdom. Wall Surg. 2012, 16, 77–89. [Google Scholar] [CrossRef] [PubMed]
- Melman, L.; Jenkins, E.D.; Hamilton, N.A.; Bender, L.C.; Brodt, M.D.; Deeken, C.R.; Greco, S.C.; Frisella, M.M.; Matthews, B.D. Early biocompatibility of crosslinked and non-crosslinked biologic meshes in a porcine model of ventral hernia repair. Hernia J. Hernias Abdom. Wall Surg. 2011, 15, 157–164. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deeken, C.R.; Lake, S.P. Mechanical properties of the abdominal wall and biomaterials utilized for hernia repair. J. Mech. Behav. Biomed. Mater. 2017, 74, 411–427. [Google Scholar] [CrossRef] [PubMed]
- Kyeremanteng, K.; Wan, C.; D’Egidio, G.; Neilipovitz, D. Approach to economic analysis in critical care. J. Crit. Care 2016, 36, 92–96. [Google Scholar] [CrossRef] [PubMed]
- Krpata, D.M.; Schmotzer, B.J.; Flocke, S.; Jin, J.; Blatnik, J.A.; Ermlich, B.; Novitsky, Y.W.; Rosen, M.J. Design and initial implementation of HerQLes: A hernia-related quality-of-life survey to assess abdominal wall function. J. Am. Coll. Surg. 2012, 215, 635–642. [Google Scholar] [CrossRef] [PubMed]
- Petro, C.C.; Novitsky, Y.W. Classification of Hernias. In Hernia Surgery Current Principles; Novitsky, Y.W., Ed.; Springer International Publishing: Basel, Switzerland, 2016; pp. 15–21. [Google Scholar]
- Nissen, A.T.; Henn, D.; Moshrefi, S.; Gupta, D.; Nazerali, R.; Lee, G.K. Health-Related Quality of Life After Ventral Hernia Repair With Biologic and Synthetic Mesh. Ann. Plast. Surg. 2019, 85, S332–S338. [Google Scholar] [CrossRef] [PubMed]
- Schneeberger, S.; Phillips, S.; Huang, L.C.; Pierce, R.A.; Etemad, S.A.; Poulose, B.K. Cost-Utility Analysis of Biologic and Biosynthetic Mesh in Ventral Hernia Repair: When Are They Worth It? J. Am. Coll. Surg. 2019, 228, 66–71. [Google Scholar] [CrossRef] [PubMed]
- Reinbold, J.; Hierlemann, T.; Urich, L.; Uhde, A.K.; Muller, I.; Weindl, T.; Vogel, U.; Schlensak, C.; Wendel, H.P.; Krajewski, S. Biodegradable rifampicin-releasing coating of surgical meshes for the prevention of bacterial infections. Drug Des. Dev. Ther. 2017, 11, 2753–2762. [Google Scholar] [CrossRef]
- Mezey, E.; Nemeth, K. Mesenchymal stem cells and infectious diseases: Smarter than drugs. Immunol. Lett. 2015, 168, 208–214. [Google Scholar] [CrossRef]
- Gentile, P.; Casella, D.; Palma, E.; Calabrese, C. Engineered Fat Graft Enhanced with Adipose-Derived Stromal Vascular Fraction Cells for Regenerative Medicine: Clinical, Histological and Instrumental Evaluation in Breast Reconstruction. J. Clin. Med. 2019, 8, 504. [Google Scholar] [CrossRef]
- Oliveira, J.M.; Carvalho, L.; Silva-Correia, J.; Vieira, S.; Majchrzak, M.; Lukomska, B.; Stanaszek, L.; Strymecka, P.; Malysz-Cymborska, I.; Golubczyk, D.; et al. Hydrogel-based scaffolds to support intrathecal stem cell transplantation as a gateway to the spinal cord: Clinical needs, biomaterials, and imaging technologies. NPJ Regen. Med. 2018, 3, 8. [Google Scholar] [CrossRef] [PubMed]
- Saweyr, M. Open Abdomen Incisional Herniorrhaphy in Contaminated (CDC Class IV) Operative Field. Clin. Case Study 2018. [Google Scholar]
- Ferzoco, S.J. Early experience outcome of a reinforced Bioscaffold in inguinal hernia repair: A case series. Int. J. Surg. Open 2018, 12, 9–11. [Google Scholar] [CrossRef]
- Khan, F.; Tanaka, M. Designing Smart Biomaterials for Tissue Engineering. Int. J. Mol. Sci. 2018, 19, 17. [Google Scholar] [CrossRef] [PubMed]
- D’Amore, L.; Ceci, F.; Mattia, S.; Fabbi, M.; Negro, P.; Gossetti, F. Adhesion prevention in ventral hernia repair: An experimental study comparing three lightweight porous meshes recommended for intraperitoneal use. Hernia J. Hernias Abdom. Wall Surg. 2017, 21, 115–123. [Google Scholar] [CrossRef] [PubMed]
- Bruzzone, P.; D’Amore, L.; Ceci, F.; Negro, P.; Gossetti, F. Mesh migration into the large bowel following inguinal hernia repair. A new task for the colorectal surgeon? Colorectal Dis. 2019, 21, 120. [Google Scholar] [CrossRef] [PubMed]
- Gossetti, F.; D’Amore, L.; Annesi, E.; Bruzzone, P.; Bambi, L.; Grimaldi, M.R.; Ceci, F.; Negro, P. Mesh-related visceral complications following inguinal hernia repair: An emerging topic. Hernia J. Hernias Abdom. Wall Surg. 2019. [Google Scholar] [CrossRef]
- Ceci, F.; D’Amore, L.; Grimaldi, M.R.; Annesi, E.; Bambi, L.; Bruzzone, P.; Negro, P.; Gossetti, F. Central mesh failure (CMF) after abdominal wall repair. A rare cause of recurrence. Ann. Ital. Chir. 2018, 89, 266–269. [Google Scholar] [PubMed]
- Yang, G.P.C. From intraperitoneal onlay mesh repair to preperitoneal onlay mesh repair. Asian J. Endosc. Surg. 2017, 10, 119–127. [Google Scholar] [CrossRef]
- Tiengo, C.; Giatsidis, G.; Azzena, B. Fascia lata allografts as biological mesh in abdominal wall repair: Preliminary outcomes from a retrospective case series. Plast. Reconstr. Surg. 2013, 132, 631e–639e. [Google Scholar] [CrossRef]
- Gómez-Gil, G.; Bellón, J.M.; Gómez-Gil, V.; Pascual, G.; Bellón, J.M. Biomaterial Implants in Abdominal Wall Hernia Repair: A Review on the Importance of the Peritoneal Interface. Processes 2019, 7, 105. [Google Scholar]
Synthetic Meshes | ||||
Name | Manufacturer | Type of Material | Characteristics | Recommended Application |
Bard® soft mesh | Bard Davol | Polypropylene | Monofilament | Repair of inguinal hernia |
CK™ Parastomal hernia patch | Bard Davol | Polypropylene/ePTFE | Parietal side: Monofilament polypropylene for tissue ingrowth, Visceral side: ePTFE to minimize tissue attachment | Repair of parastomal hernias |
CuraSoft™ patch | Bard Davol | PTFE mesh/ePTFE | Repair of hiatal and para-esophageal hernias | |
Dulex™ | Bard Davol | ePTFE | Micro-porous side to minimize visceral attachment to the prosthesis and a macro-porous side to promote tissue in-growth | Hernia and soft tissue repair |
Dualmesh Biomaterial® | Gore | ePTFF | Double face: Textured/soft, to avoid adhesion to viscera | Hernia and soft tissue repair, temporary bridging of fascial defects |
PerFix™ plug | Bard Davol | Polypropylene | Monofilament | Repair of inguinal/groin hernias |
Prolene® | Ethicon | Polypropylene | Small abdominal wall hernia repair | |
Ultrapro® | Ethicon | Monocryl/polypropylene filament | Monocryl is absorbable | Hernia repair |
Ventralex™ | Bard Davol | Polypropylene/ePTFE | Self-expanding: Eliminate the lateral dissection required for pre-peritoneal placement | Repair of umbilical hernias |
Ventrio™ | Bard Davol | Polypropylene/ePTFE | Parietal side: two layers of monofilament polypropylene Visceral side: Submicronic ePTFE, minimizing tissue attachment | Hernia and soft tissue repair |
Visilex® mesh | Bard Davol | Polypropylene | Monofilament Reinforced edges | Repair of inguinal hernias |
3DMax™ mesh | Bard Davol | Polypropylene | 3D | Repair of inguinal hernias |
ECM Biomaterial Meshes | ||||
Name | Manufacturer | Species | Tissue | Recommended Application |
AlloDerm® | LifeCell | Human | Dermis | Repair/replacement of damaged/inadequate integumental tissues |
AlloMax™ | Bard Davol | Human | Dermis | Repair/replacement/reconstruction or augmentation of soft tissue. Horizontal/vertical soft tissue augmentation of thickness and length, such as post-mastectomy breast reconstruction. |
CollaMend™ | Bard Davol | Porcine | Dermis (cross-linked) | Hernia repair |
Flex HD® | Ethicon | Human | Dermis | Complicated hernia repair |
Fortiva® | RTI Surgical Inc. | Porcine | Dermis | Soft tissue reinforcement. Repair of damaged or ruptured soft tissue membranes. Repair of hernias and/or body wall defects. |
Gentrix® surgical matrix | ACell Inc. | Porcine | Urinary bladder | Repair of hernia, body wall, colon and rectal prolapse, esophagus |
Peri-Guard® | Synovis Surgical Innovations | Bovine | Pericardium (cross-linked) | Repair of pericardial structures. Patch for intracardiac defects, great vessel, septal defect and annulus repair, and suture-line buttressing. Repair of soft tissue: defects of the abdominal and thoracic wall, gastric binding, muscle flap reinforcement, and hernias (diaphragmatic, femoral, incisional, inguinal, lumbar, para-colostomy, scrotal, and umbilical hernias). |
Permacol™ | Covidien | Porcine | Dermis (cross-linked) | Soft tissue repair. Hernia/abdominal wall repair. |
StratticeTM | Life Cell Corporation (Allergan) | Porcine | Dermis | Soft tissue repair. Hernia/abdominal wall repair. |
SurgiMend® | Integra LifeSciences | Bovine | Fetal Dermis | Soft tissue repair. Plastic and reconstructive surgery. Muscle flap reinforcement. Abdominal, inguinal, femoral, diaphragmatic, scrotal, umbilical, and incisional hernias. |
Surgisis®/Biodesign® | Cook Medical | Porcine | Small Intestinal Submucosa (SIS) | Soft tissue repair. Dural repair. Hernia repair. |
Tutopatch® | RTI Sugical | Bovine | Pericardium | Soft tissue repair. Plastic surgery. Repair of pericardial structures. |
Veritas® | Synovis Surgical Innovations | Bovine | Pericardium | Reconstruction of the pelvic floor. Repair of rectal prolapse. Soft tissue repair: abdominal and thoracic wall repair, muscle flap reinforcement, and repair of hernia. |
Xenmatrix™ | Bard Davol | Porcine | Dermis (coated with a bioresorbable L-Tyrosine succinate polymer, which acts as a carrier for Rifampin and Minocycline) | Abdominal plastic and reconstructive surgery. Muscle flap reinforcement. Hernia repair. |
Name | Manufacturer | Type of Material | Recommended Application |
---|---|---|---|
C-Qur meshes | Atrium | Polypropylene/Omega-3 fatty acids | Open and laparoscopic hernia repair |
ParieteneTM | Covidien | Polypropylene/Collagen film | Open and laparoscopic hernia repair |
ParietexTM | Covidien | 3D monofilament polyester (large pores)/Collagen film | Hernia repair |
Proceed® | Ethicon | Polypropylene/Oxidized regenerated cellulose | Open and laparoscopic incisional hernia repair |
Progrip™ | Covidien | Polyester monofilament/absorbable micro grips of polylactic acid | Laparoscopic inguinal hernia repair |
Sepramesh™ | Bard Davol | Polypropylene/Cellulose | Hernia repair |
Symbotex™ | Covidien | Polyester/Collagen film | Abdominal wall repair |
Vypro and Vypro II | Ethicon | Polypropylene/Polyglactin | Open and laparoscopic inguinal hernia repair |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Costa, A.; Adamo, S.; Gossetti, F.; D’Amore, L.; Ceci, F.; Negro, P.; Bruzzone, P. Biological Scaffolds for Abdominal Wall Repair: Future in Clinical Application? Materials 2019, 12, 2375. https://doi.org/10.3390/ma12152375
Costa A, Adamo S, Gossetti F, D’Amore L, Ceci F, Negro P, Bruzzone P. Biological Scaffolds for Abdominal Wall Repair: Future in Clinical Application? Materials. 2019; 12(15):2375. https://doi.org/10.3390/ma12152375
Chicago/Turabian StyleCosta, Alessandra, Sergio Adamo, Francesco Gossetti, Linda D’Amore, Francesca Ceci, Paolo Negro, and Paolo Bruzzone. 2019. "Biological Scaffolds for Abdominal Wall Repair: Future in Clinical Application?" Materials 12, no. 15: 2375. https://doi.org/10.3390/ma12152375
APA StyleCosta, A., Adamo, S., Gossetti, F., D’Amore, L., Ceci, F., Negro, P., & Bruzzone, P. (2019). Biological Scaffolds for Abdominal Wall Repair: Future in Clinical Application? Materials, 12(15), 2375. https://doi.org/10.3390/ma12152375