The Influence of Aging in Solvents on Dental Cements Hardness and Diametral Tensile Strength
Abstract
:1. Introduction
2. Materials and Methods
- Solution of baking soda (2.5%);
- Solution of water and ethanol (75%);
- Green tea.
3. Results and Discussion
- -
- Control group vs. 30 days in ethanol solution (p = 0.0006);
- -
- 1 day in ethanol vs. 30 days in ethanol solution (p = 0.0008);
- -
- 30 days in ethanol solution vs. 1 day in tea solution (p = 0.0000), 7 day in tea solution (p = 0.0017), 1 day in soda solution (p = 0.0000), 7 day in soda solution (p = 0.0006), 30 days in soda solution (p = 0.0459).
- -
- Control group vs. 30 days in soda solution (p = 0.0163),
- -
- 1 day in tea solution vs. 7 days in ethanol solution (p = 0.0021),
- -
- 7 days in soda solution vs. 1 day in ethanol solution (p = 0.0167), 7 days in ethanol solution (p = 0.0000), 30 days in ethanol solution (p = 0.0108),
- -
- 30 days in soda solution vs. 1 day in ethanol solution (p = 0.0022), 7 days in ethanol solution (p = 0.0000), 30 days in ethanol solution (p = 0.0013), 7 day in tea solution (p = 0.0336).
- -
- 1 day in tea solution vs. 30 days in ethanol solution (p = 0.0321).
- -
- 7 days in ethanol solution vs. 30 days in soda solution (p = 0.0439), 7 days in tea solution (0.0439).
- -
- 30 days in tea solution vs. 30 days in soda solution (p = 0.0348), 7 days in tea solution (0.0348).
- -
- 30 days in ethanol solution vs. 30 days in soda solution (p = 0.0093).
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Macura-Karbownik, A.; Chladek, G.; Żmudzki, J.; Kasperski, J. Chewing Efficiency and Occlusal Forces in PMMA, Acetal and Polyamide Removable Partial Denture Wearers. Acta Bioeng. Biomech. 2016, 18, 127–134. [Google Scholar] [CrossRef]
- Diaz-Arnold, A.M.; Vargas, M.A.; Haselton, D.R. Current Status of Luting Agents for Fixed Prosthodontics. J. Prosthet. Dent. 1999, 81, 135–141. [Google Scholar] [CrossRef]
- Hill, E.E.; Lott, J. A Clinically Focused Discussion of Luting Materials. Aust. Dent. J. 2011, 56 (Suppl. S1), 67–76. [Google Scholar] [CrossRef] [PubMed]
- Marzec-Gawron, M.; Michalska, S.; Dejak, B. Właściwości Współczesnych Cementów Kompozytowych Oraz Ich Mechanizm Wiązania Do Szkliwa i Zębiny to Enamel and Dentin. Protet. Stomatol. 2012, 3, 173–180. [Google Scholar] [CrossRef]
- Craig, R.G. Materiały Stomatologiczne; Edra Urban & Partner: Wrocław, Poland, 2006. [Google Scholar]
- Li, Z.C.; White, S.N. Mechanical Properties of Dental Luting Cements. J. Prosthet. Dent. 1999, 81, 597–609. [Google Scholar] [CrossRef]
- Sokołowski, G.; Szczesio-Włodarczyk, A.; Konieczny, B.; Bociong, K.; Sokołowski, J. Ocena Porównawcza Właściwości Mechanicznych Cementów Żywicznych, Samoadhezyjnych i Samotrawiących. Protet 2018, 68, 415–424. [Google Scholar] [CrossRef]
- Christensen, G.J. Why Use Resin Cements? J. Am. Dent. Assoc. 2010, 141, 204–206. [Google Scholar] [CrossRef] [PubMed]
- Pawłowska, E.; Loba, K.; Błasiak, J.; Szczepańska, J. Właściwości i Ryzyko Stosowania Metakrylanu Bisfenolu A i Dimetakrylanu Uretanu – Podstawowych Monomerów Kompozytów Stomatologicznych. Dent. Med. Probl. 2009, 46, 477–485. [Google Scholar]
- Nicholson, J.W.; Wasson, E.A. A Study of the Structure Dental Cements of Zinc Polycarboxylate. J. Mater. Sci. Mater. Med. 1993, 4, 32–35. [Google Scholar] [CrossRef]
- Majewski, S.; Pryliński, M. Materiały i Technologie Współczesnej Protetyki Stomatologicznej; Czelej: Lublin, Poland, 2011. [Google Scholar]
- Wagner, L.; Bączkowski, B. Wprowadzenie do Ćwiczeń Przedklinicznych z Materiałoznawstwa: Materiały Stosowane w Protetyce. Skrypt dla Studentów; Oficyna Wydawnicza WUM: Warszawa, Poland, 2010. [Google Scholar]
- Bowen, R.L.; Marjenhoff, W.A. Dental Composites/Glass Ionomers: The Materials. Adv. Dent. Res. 1992, 6, 44–49. [Google Scholar] [CrossRef] [PubMed]
- Kupka, T. Szkło-Jonomery—Przesłość, Teraźniejszość i Przyszłość Dentystyki Odtwórczej. Mag. Stomatol. 2014, 4, 28–32. [Google Scholar]
- Pereira, L.C.; Nunes, M.C.P.; Dibb, R.G.P.; Powers, J.M.; Roulet, J.F.; Navarro, M.F.D.L. Mechanical Properties and Bond Strength of Glass-Ionomer Cements. J. Adhes. Dent. 2002, 4, 73–80. [Google Scholar] [PubMed]
- Lohbauer, U. Dental Glass Ionomer Cements as Permanent Filling Materials?—Properties, Limitations and Future Trends. Materials 2010, 3, 76–96. [Google Scholar] [CrossRef]
- Szczyrek, P.; Zadroga, K.; Mierzwińska-nastalska, E. Cementowanie Uzupełnień Pełnoceramicznych—Przegląd Piśmiennictwa. Część I. Protet. Stomatol. 2008, 58, 279–283. [Google Scholar]
- Sokolowski, G.; Szczesio, A.; Bociong, K.; Kaluzinska, K.; Lapinska, B.; Sokolowski, J.; Domarecka, M.; Lukomska-Szymanska, M. Dental Resin Cements—The Influence of Water Sorption on Contraction Stress Changes and Hydroscopic Expansion. Materials 2018, 11, 973. [Google Scholar] [CrossRef] [PubMed]
- Özcan, M. Luting Cements for Dental Applications. In Non-Metallic Biomaterials for Tooth Repair and Replacement; Woodhead Publishing: Cambridge, UK, 2013; pp. 375–394. [Google Scholar]
- Ferracane, J.L.; Berge, H.X. Fracture Toughness of Experimental Dental Composites Aged in Ethanol. J. Dent. Res. 1995, 74, 1418–1423. [Google Scholar] [CrossRef] [PubMed]
- Bauer, H.; Ilie, N. Effects of Aging and Irradiation Time on the Properties of a Highly Translucent Resin-Based Composite. Dent. Mater. J. 2013, 32, 592–599. [Google Scholar] [CrossRef]
- Sideridou, I.D.; Karabela, M.M.; Bikiaris, D.N. Aging Studies of Light Cured Dimethacrylate-Based Dental Resins and a Resin Composite in Water or Ethanol/Water. Dent. Mater. 2007, 23, 1142–1149. [Google Scholar] [CrossRef]
- Lee, S.Y.; Greener, E.H.; Menis, D.L. Detection of Leached Moieties from Dental Composites in Fluid Simulating Food and Saliva. Dent. Mater. 1995, 11, 348–353. [Google Scholar] [CrossRef]
- Fonseca, A.S.Q.S.; Gerhardt, K.M.F.; Pereira, G.D.S.; Sinhoreti, M.A.C.; Schneider, L.F.J. Do New Matrix Formulations Improve Resin Composite Resistance to Degradation Processes? Braz. Oral Res. 2017, 27, 410–416. [Google Scholar] [CrossRef]
- Ferracane, J.L.; Marker, V.A. Solvent Degradation and Reduced Fracture Toughness in Aged Composites. J. Dent. Res. 1992, 71, 13–19. [Google Scholar] [CrossRef]
- McKinney, J.E.; Wu, W. Chemical Softening and Wear of Dental Composites. J. Dent. Res. 1985, 64, 1326–1331. [Google Scholar] [CrossRef]
- Drummond, J.L.; Andronova, K.; Al-Turki, L.I.; Slaughter, L.D. Leaching and Mechanical Properties Characterization of Dental Composites. J. Biomed. Mater. Res. Part B Appl. Biomater. 2004, 71, 172–180. [Google Scholar] [CrossRef]
- Al Badr, R.M.; Hassan, H.A. Effect of Immersion in Different Media on the Mechanical Properties of Dental Composite Resins. Int. J. Appl. Dent. Sci. 2017, 3, 81–88. [Google Scholar]
- Malacarne, J.; Carvalho, R.M.; de Goes, M.F.; Svizero, N.; Pashley, D.H.; Tay, F.R.; Yiu, C.K.; Carrilho, M.R.D.O. Water Sorption/Solubility of Dental Adhesive Resins. Dent. Mater. 2006, 22, 973–980. [Google Scholar] [CrossRef]
- Pashley, D.H.; Tay, F.R.; Carvalho, R.M.; Rueggeberg, F.A.; Agee, K.A.; Carrilho, M.; Donnelly, A.; García-Godoy, F. From Dry Bonding to Water-Wet Bonding to Ethanol-Wet Bonding. A Review of the Interactions between Dentin Matrix and Solvated Resins Using a Macromodel of the Hybrid Layer. Am. J. Dent. 2007, 20, 7–20. [Google Scholar]
- Gavranović-Glamoč, A.; Ajanović, M.; Korać, S.; Zukić, S.; Strujić-Porović, S.; Kamber-Ćesir, A.; Kazazić, L.; Berhamović, E. Evaluation of the Water Sorption of Luting Cements in Different Solutions. Acta Med. Acad. 2017, 46, 124–132. [Google Scholar] [CrossRef]
- Afife Binnaz Hazar, Y.; Karaaslan, A. Effect of Water Storage on the Mechanical Properties of Zinc Polycarboxylate Cements. Dig. J. Nanomater. Biostruct. 2007, 2, 243–252. [Google Scholar]
- Keyf, F.; Tuna, S.H.; Şen, M.; Safrany, A. Water Sorption and Solubility of Different Luting and Restorative Dental Cements. Turk. J. Med. Sci. 2007, 37, 47–55. [Google Scholar]
- Yanikoglu, N.; Duymus, Z. Evaluation of the Solubility of Dental Cements in Artificial Saliva of Different PH Values. Dent. Mater. J. 2007, 26, 62–67. [Google Scholar] [CrossRef]
- PN-EN ISO 4049:2003. Available online: http://sklep.pkn.pl/pn-en-iso-4049-2003p.html (accessed on 1 August 2019).
- Podlewska, M.; Nowak, J.; Półtorak, K.; Sokołowski, J.; Łukomska-Szymańska, M. Metody Badania Parametrów Wytrzymałości Mechanicznych Materiałów Kompozytowych. E Dentico 2015, 5, 92–98. [Google Scholar]
- Fonseca, R.G.; Gomes, J.; Adabo, G.L. Influence of Activation Modes on Diametral Tensile Strength of Dual-Curing Resin Cements. Braz. Oral Res. 2005, 19, 267–271. [Google Scholar] [CrossRef]
- Kim, A.R.; Jeon, Y.C.; Jeong, C.M.; Yun, M.J.; Choi, J.W.; Kwon, Y.H.; Huh, J.B. Effect of Activation Modes on the Compressive Strength, Diametral Tensile Strength and Microhardness of Dual-Cured Self-Adhesive Resin Cements. Dent. Mater. J. 2016, 35, 298–308. [Google Scholar] [CrossRef]
- Stencel, R.; Kasperski, J.; Pakiela, W.; Mertas, A.; Bobela, E.; Barszczewska-Rybarek, I.; Chladek, G. Properties of Experimental Dental Composites Containing Antibacterial Silver-Releasing Filler. Materials 2018, 11, 1031. [Google Scholar] [CrossRef]
- Alves, P.B.; Brandt, W.C.; Neves, A.C.C.; Cunha, L.G.; Silva-Concilio, L.R. Mechanical Properties of Direct and Indirect Composites after Storage for 24 Hours and 10 Months. Eur. J. Dent. 2013, 7, 117–122. [Google Scholar]
- Zandinejad, A.A.; Atai, M.; Pahlevan, A. The Effect of Ceramic and Porous Fillers on the Mechanical Properties of Experimental Dental Composites. Dent. Mater. 2006, 22, 382–387. [Google Scholar] [CrossRef]
- Crisp, S.; Wilson, A.D. Reactions in Glass Ionomer Cements I. Decomposition of the Powder. J. Dent. Res. 1974, 53, 1408–1413. [Google Scholar] [CrossRef]
- Sidhu, S.; Nicholson, J. A Review of Glass-Ionomer Cements for Clinical Dentistry. J. Funct. Biomater. 2016, 7, 16. [Google Scholar] [CrossRef]
- Xie, D.; Brantley, W.A.; Culbertson, B.M.; Wang, G. Mechanical Properties and Microstructures of Glass-Ionomer Cements. Dent. Mater. 2000, 16, 129–138. [Google Scholar] [CrossRef]
- Cattani-Lorente, M.A.; Godin, C.; Meyer, J.M. Early Strength of Glass Ionomer Cements. Dent. Mater. 1993, 9, 57–62. [Google Scholar] [CrossRef]
Manufacturer | Material | Type | Composition | Preparation and Curing |
---|---|---|---|---|
Jeneric Pentron (Orange, CA, USA) | Breeze | Self-adhesive resin cement | Bisphenol A glycol dimethacrylate (bis-GMA), urethane dimethacrylate (UDMA), triethylene glycol dimethacrylate (TEGDMA), hydroxyethyl methacrylate (HEMA), 4-methacryloxyethyl trimellitic anhydride (4-MET), silanized barium glass, silica, BiOCl, curing system | Mixing: Self-mixing syringe, curing: Polymerized using a 3M ESPE EliparTM S10 diode lamp on the top and bottom surface of the sample as recommended by the manufacturer for 20 s |
SpofaDental (Jičín, Czech Republic) | Adhesor Carbofine | Zinc-polycarboxylate cement | Powder: Zinc oxide, magnesium oxide, aluminum oxide, boric acid, liquid: Acrylic acid, maleic anhydride, distilled water | Mixing: 1:1 (power:liquid) mixing ratio recommended by manufacturer; curing: 7 min self-curing in plastic zip bag |
Ihde Dental AG (Gommiswald, Switzerland) | Glass-ionomer cement (Ihdent® GIZ® fil Typ II) | Glass ionomer cement | Aluminum-fluoride-silicate powder, iron oxide, polyacrylic acid | Mixing: 1.8–2.2 g of powder per 1 g of liquid (mixing ratio recommended by manufacturer); curing: 5–8 min self-curing in plastic zip bag |
Solution | pH (Litmus Paper) | pH (pH-Meter) |
---|---|---|
Green tea | 5–6 | 6 |
Ethanol:water (75%) | 7 | 8 |
Soda solution (2.5%) | 9 | 9 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szczesio-Wlodarczyk, A.; Rams, K.; Kopacz, K.; Sokolowski, J.; Bociong, K. The Influence of Aging in Solvents on Dental Cements Hardness and Diametral Tensile Strength. Materials 2019, 12, 2464. https://doi.org/10.3390/ma12152464
Szczesio-Wlodarczyk A, Rams K, Kopacz K, Sokolowski J, Bociong K. The Influence of Aging in Solvents on Dental Cements Hardness and Diametral Tensile Strength. Materials. 2019; 12(15):2464. https://doi.org/10.3390/ma12152464
Chicago/Turabian StyleSzczesio-Wlodarczyk, Agata, Karolina Rams, Karolina Kopacz, Jerzy Sokolowski, and Kinga Bociong. 2019. "The Influence of Aging in Solvents on Dental Cements Hardness and Diametral Tensile Strength" Materials 12, no. 15: 2464. https://doi.org/10.3390/ma12152464
APA StyleSzczesio-Wlodarczyk, A., Rams, K., Kopacz, K., Sokolowski, J., & Bociong, K. (2019). The Influence of Aging in Solvents on Dental Cements Hardness and Diametral Tensile Strength. Materials, 12(15), 2464. https://doi.org/10.3390/ma12152464