Nanotechnology in Transportation Vehicles: An Overview of Its Applications, Environmental, Health and Safety Concerns
Abstract
:1. Introduction
2. Literature Collection and Research Methodology
2.1. Selection of the Research Material
2.2. Content Analysis Method
2.3. Validity of the Literature Research Process
3. Nanotechnology Applications in Transportation Vehicles
3.1. Nanotechnology Applications in the Automotive Industry
3.1.1. Effective and Efficient Nano-Based Coatings for Automobiles
3.1.2. Nanotechnology for Lightweight and Higher Strength Automobile Bodies
3.1.3. Safer and Secure Mirrors and Windows
3.1.4. Efficient and Durable Nano-based Tires
3.1.5. Nanotechnology for an Efficient Engine
3.1.6. Nanotechnology Applications for a Safer Indoor Environment in Vehicles
3.2. Nanotechnology Applications in the Aerospace Industry
3.2.1. Nanotechnology Applications for Higher Strength and Lighter Weight in Aerospace
3.2.2. Nanotechnology Application for the Protection of the Airplane Body
3.2.3. Nanomaterials for More Efficient and Effective Body and Wire Networks in Airplanes
3.2.4. Nanotechnology Coatings to Enhance the Sensing and Safety of the Aircraft
3.3. Nanotechnology Applications in Marine Transportation
3.3.1. Nano-Based Coatings to Handle Bio-Fouling and Corrosion
3.3.2. Nano-Based Materials for the Enhancement of Strength of Marine Vehicles
4. Environmental Health and Safety Concerns
4.1. Nanotechnology Environmental and Health Concerns
4.1.1. Nanoparticle Toxicity
4.1.2. Exposure of Nanotechnology
4.1.3. Impacts on Human Health
4.2. Safety Concerns
5. Outlook for Future Research
5.1. Cost Effective Nanomaterials
5.2. Multifunctional Nanomaterials
5.3. Appropriate Regulatory Framework
5.4. Environmentally Friendly Nanotechnology
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Serrano, E.; Rus, G.; García-Martínez, J. Nanotechnology for sustainable energy. Renew. Sustain. Energy Rev. 2009, 13, 2373–2384. [Google Scholar] [CrossRef]
- Lee, S.J.; Kriven, W.M. Synthesis and hydration study of Portland cement components prepared by the organic steric entrapment method. Mater. Struct. Constr. 2005, 38, 87–92. [Google Scholar] [CrossRef]
- Dong, L.; Subramanian, A.; Nelson, B.J. Carbon nanotubes for nanorobotics. Nano Today 2007, 2, 12–21. [Google Scholar] [CrossRef]
- Burkholder, G.L.; Kwon, Y.W.; Pollak, R.D. Effect of carbon nanotube reinforcement on fracture strength of composite adhesive joints. J. Mater. Sci. 2011, 46, 3370–3377. [Google Scholar] [CrossRef]
- Baur, J.; Silverman, E. Challenges and opportunities in multifunctional nanocomposite structures for aerospace applications. MRS Bull. 2007, 32, 328–334. [Google Scholar] [CrossRef]
- Kulkarni, M.; Mazare, A.; Gongadze, E.; Perutkova, Š.; Kralj-Iglic, V.; Milošev, I.; Schmuki, P.; Iglič, A.; Mozetič, M. Titanium nanostructures for biomedical applications. Nanotechnology 2015, 26, 062002. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Gu, F.X.; Chan, J.M.; Wang, A.Z.; Langer, R.S.; Farokhzad, O.C. Nanoparticles in medicine: Therapeutic applications and developments. Clin. Pharmacol. Ther. 2008, 83, 761–769. [Google Scholar] [CrossRef]
- Choi, H.; Liu, T.; Nath, K.; Zhou, R.; Chen, I.W. Peptide nanoparticle with pH-sensing cargo solubility enhances cancer drug efficiency. Nano Today 2017, 13, 15–22. [Google Scholar] [CrossRef]
- Genchi, G.G.; Marino, A.; Rocca, A.; Mattoli, V.; Ciofani, G. Barium titanate nanoparticles: Promising multitasking vectors in nanomedicine. Nanotechnology 2016, 27, 232001. [Google Scholar] [CrossRef]
- Ye, F.; Zhao, Y.; El-Sayed, R.; Muhammed, M.; Hassan, M. Advances in nanotechnology for cancer biomarkers. Nano Today 2018, 18, 103–123. [Google Scholar] [CrossRef]
- Felix, D.G.; SivaKumar, G. Nano particles in Automobile Tires. IOSR J. Mech. Civ. Eng. 2014, 11, 7–11. [Google Scholar] [CrossRef]
- He, X.; Deng, H.; Hwang, H. The current application of nanotechnology in food and agriculture. J. Food Drug Anal. 2019, 27, 1–21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meyers, M.A.; Lim, C.T.; Li, A.; Hairul Nizam, B.R.; Tan, E.P.S.; Seki, Y.; McKittrick, J. The role of organic intertile layer in abalone nacre. Mater. Sci. Eng. C 2009, 29, 2398–2410. [Google Scholar] [CrossRef]
- Giesa, T.; Arslan, M.; Pugno, N.M.; Buehler, M.J. Nanoconfinement of spider silk fibrils begets superior strength, extensibility, and toughness. Nano Lett. 2011, 11, 5038–5046. [Google Scholar] [CrossRef] [PubMed]
- Merlo, A.M. The contribution of surface engineering to the product performance in the automotive industry. Surf. Coat. Technol. 2003, 174, 21–26. [Google Scholar] [CrossRef]
- Zhu, W.; Bartos, P.J.M.; Porro, A. Application of nanotechnology in construction Summary of a state-of-the-art report. Mater. Struct. Constr. 2004, 37, 649–658. [Google Scholar] [CrossRef]
- Asmatulu, R.; Nguyen, P.; Asmatulu, E. Nanotechnology Safety in the Automotive Industry. In Nanotechnology Safety; Elsevier: Amsterdam, The Netherlands, 2013; Chapter 5; pp. 57–72. ISBN 9780444594389. [Google Scholar]
- Mathew, J.; Joy, J.; George, S.C. Potential applications of nanotechnology in transportation: A review. J. King Saud Univ. Sci. 2018. [Google Scholar] [CrossRef]
- Isenstadt, A.; German, J.; Bubna, P.; Wiseman, M.; Venkatakrishnan, U.; Abbasov, L.; Guillen, P.; Moroz, N.; Richman, D.; Kolwich, G. Lightweighting Technology Development and Trends in U.S. Passenger Vehicles; Working Paper 25; International Council on Clean Transportation: Washington, DC, USA, 2016; pp. 1–24. [Google Scholar]
- Tahmassebi, N.; Moradian, S.; Ramezanzadeh, B.; Khosravi, A.; Behdad, S. Effect of addition of hydrophobic nano silica on viscoelastic properties and scratch resistance of an acrylic/melamine automotive clearcoat. Tribol. Int. 2010, 43, 685–693. [Google Scholar] [CrossRef]
- Seubert, C.; Nietering, K.; Nichols, M.; Wykoff, R.; Bollin, S. An Overview of the Scratch Resistance of Automotive Coatings: Exterior Clearcoats and Polycarbonate Hardcoats. Coatings 2012, 2, 221–234. [Google Scholar] [CrossRef] [Green Version]
- Jarosz, P.R.; Shaukat, A.; Schauerman, C.M.; Cress, C.D.; Kladitis, P.E.; Ridgley, R.D.; Landi, B.J. High-performance, lightweight coaxial cable from carbon nanotube conductors. ACS Appl. Mater. Interfaces 2012, 4, 1103–1109. [Google Scholar] [CrossRef]
- Qian, Y.; Li, Y.; Jungwirth, S.; Seely, N.; Fang, Y.; Shi, X. The Application of Anti-Corrosion Coating for Preserving the Value of Equipment Asset in Chloride-Laden Environments: A Review. Int. J. Electrochem. Sci. 2015, 10, 10756–10780. [Google Scholar]
- Lazaro Garcia, A.; Quercia, G.; Brouwers, H.J.H.; Geus, J.W. Synthesis of a green nano-silica material using beneficiated waste dunites and its application in concrete. World J. Nano Sci. Eng. 2013, 2013, 41–51. [Google Scholar] [CrossRef]
- Malani, A.S.; Chaudhari, A.D.; Sambhe, R.U. A Review on Applications of Nanotechnology in Automotive Industry. World Acad. Sci. Eng. Technol. Int. J. Mech. Mechatron. Eng. 2016, 10, 36–40. [Google Scholar]
- Zhang, J.; Guo, W.; Li, Q.; Wang, Z.; Liu, S. The effects and the potential mechanism of environmental transformation of metal nanoparticles on their toxicity in organisms. Environ. Sci. Nano 2018, 5, 2482–2499. [Google Scholar] [CrossRef]
- Mahapatra, I.; Clark, J.R.A.; Dobson, P.J.; Owen, R.; Lynch, I.; Lead, J.R. Expert perspectives on potential environmental risks from nanomedicines and adequacy of the current guideline on environmental risk assessment. Environ. Sci. Nano 2018, 5, 1873–1889. [Google Scholar] [CrossRef] [Green Version]
- Peng, C.; Zhang, W.; Gao, H.; Li, Y.; Tong, X.; Li, K.; Zhu, X.; Wang, Y.; Chen, Y. Behavior and Potential Impacts of Metal-Based Engineered Nanoparticles in Aquatic Environments. Nanomaterials 2017, 7, 21. [Google Scholar] [CrossRef] [PubMed]
- Türk, V.; Kaiser, C.; Schaller, S. Invisible but tangible? Societal opportunities and risks of nanotechnologies. J. Clean. Prod. 2008, 16, 1006–1009. [Google Scholar] [CrossRef]
- Erbis, S.; Ok, Z.; Isaacs, J.A.; Benneyan, J.C.; Kamarthi, S. Review of Research Trends and Methods in Nano Environmental, Health, and Safety Risk Analysis. Risk Anal. 2016, 36, 1644–1665. [Google Scholar] [CrossRef]
- Witik, R.A.; Payet, J.; Michaud, V.; Ludwig, C.; Månson, J.A.E. Assessing the life cycle costs and environmental performance of lightweight materials in automobile applications. Compos. Part A Appl. Sci. Manuf. 2011, 42, 1694–1709. [Google Scholar] [CrossRef]
- Pietroiusti, A.; Stockmann-Juvala, H.; Lucaroni, F.; Savolainen, K. Nanomaterial exposure, toxicity, and impact on human health. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2018, 10, 1–21. [Google Scholar] [CrossRef]
- Ajdary, M.; Moosavi, M.; Rahmati, M.; Falahati, M.; Mahboubi, M.; Mandegary, A.; Jangjoo, S.; Mohammadinejad, R.; Varma, R. Health Concerns of Various Nanoparticles: A Review of Their in Vitro and in Vivo Toxicity. Nanomaterials 2018, 8, 634. [Google Scholar] [CrossRef]
- Kolosnjaj-Tabi, J.; Szwarc, H.; Moussa, F. Carbon nanotubes: Culprit or witness of air pollution? Nano Today 2017, 15, 11–14. [Google Scholar] [CrossRef]
- Kohlbacher, F. The use of qualitative content analysis in case study research. Forum Qual. Sozialforsch. 2006, 7, 1–30. [Google Scholar]
- Papp, T.; Schiffmann, D.; Weiss, D.; Castranova, V.; Vallyathan, V.; Rahman, Q. Human health implications of nanomaterial exposure. Nanotoxicology 2008, 2, 9–27. [Google Scholar] [CrossRef]
- Lee, J.; Mahendra, S.; Alvarez, P.J.J. Nanomaterials in the Construction Industry: A Review of Their Applications. Am. Chem. Soc. 2010, 4, 3580–3590. [Google Scholar]
- Mohseni, M.; Ramezanzadeh, B.; Yari, H.; Moazzami, M. The Role of Nanotechnology in Automotive Industries. In New Advances in Vehicular Technology and Automotive Engineering; IntechOpen: London, UK, 2012. [Google Scholar] [Green Version]
- Akafuah, N.; Poozesh, S.; Salaimeh, A.; Patrick, G.; Lawler, K.; Saito, K. Evolution of the Automotive Body Coating Process—A Review. Coatings 2016, 6, 24. [Google Scholar] [CrossRef]
- Blees, M.H.; Winkelman, G.B.; Balkenende, A.R.; den Toonder, J.M.J. Effect of friction on scratch adhesion testing: Application to a sol-gel coating on polypropylene. Thin Solid Films 2000, 359, 1–13. [Google Scholar] [CrossRef]
- Zhou, S.; Wu, L.; Sun, J.; Shen, W. The change of the properties of acrylic-based polyurethane via addition of nano-silica. Prog. Org. Coat. 2002, 45, 33–42. [Google Scholar] [CrossRef]
- Basu, B.J.; Dinesh Kumar, V. Fabrication of Superhydrophobic Nanocomposite Coatings Using Polytetrafluoroethylene and Silica Nanoparticles. ISRN Nanotechnol. 2011, 2011, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Song, H.J.; Zhang, Z.Z.; Men, X.H. Surface-modified carbon nanotubes and the effect of their addition on the tribological behavior of a polyurethane coating. Eur. Polym. J. 2007, 43, 4092–4102. [Google Scholar] [CrossRef]
- Ching, Y.C.; Ching, Y.C.; Yaacob, I. Effect of polyurethane/nanosilica composite coating on thermomechanical properties of polyethylene film. Mater. Technol. 2012, 27, 113–115. [Google Scholar] [CrossRef]
- Song, H.J.; Zhang, Z.Z.; Men, X.H. Tribological behavior of polyurethane-based composite coating reinforced with TiO2 nanotubes. Eur. Polym. J. 2008, 44, 1012–1022. [Google Scholar] [CrossRef]
- Kotnarowska, D.; Przerwa, M.; Szumiata, T. Resistance to Erosive Wear of Epoxy-Polyurethane Coating Modified With Nanofillers. J. Mater. Sci. Res. 2014, 3, 52. [Google Scholar] [CrossRef]
- Ching, Y.C.; Syamimie, N. Effect of Nanosilica Filled Polyurethane Composite Coating on Polypropylene Substrate. J. Nanomater. 2013, 2013, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Nobel, M.L.; Picken, S.J.; Mendes, E. Waterborne nanocomposite resins for automotive coating applications. Prog. Org. Coat. 2007, 58, 96–104. [Google Scholar] [CrossRef]
- Dhoke, S.K.; Khanna, A.S. Electrochemical impedance spectroscopy (EIS) study of nano-alumina modified alkyd based waterborne coatings. Prog. Org. Coat. 2012, 74, 92–99. [Google Scholar] [CrossRef]
- Shchukin, D.G.; Möhwald, H. Self-repairing coatings containing active nanoreservoirs. Small 2007, 3, 926–943. [Google Scholar] [CrossRef]
- Bautista, Y.; Gonzalez, J.; Gilabert, J.; Ibañez, M.J.; Sanz, V. Correlation between the wear resistance, and the scratch resistance, for nanocomposite coatings. Prog. Org. Coat. 2011, 70, 178–185. [Google Scholar] [CrossRef]
- Sangermano, M.; Messori, M. Scratch resistance enhancement of polymer coatings. Macromol. Mater. Eng. 2010, 295, 603–612. [Google Scholar] [CrossRef]
- Khanna, A.S. Nanotechnology in High Performance Paint Coatings A.S. Asian J. Exp. Sci. 2008, 21, 25–32. [Google Scholar]
- Ramezanzadeh, B.; Mohseni, M.; Yari, H.; Sabbaghian, S. An evaluation of an automotive clear coat performance exposed to bird droppings under different testing approaches. Prog. Org. Coat. 2009, 66, 149–160. [Google Scholar] [CrossRef]
- Yahyaei, H.; Mohseni, M.; Bastani, S. Using Taguchi experimental design to reveal the impact of parameters affecting the abrasion resistance of sol-gel based UV curable nanocomposite films on polycarbonate. J. Sol-Gel Sci. Technol. 2011, 59, 95–105. [Google Scholar] [CrossRef]
- Coelho, M.C.; Torrão, G.; Emami, N.; Gr´cio, J. Nanotechnology in Automotive Industry: Research Strategy and Trends for the Future—Small Objects, Big Impacts. J. Nanosci. Nanotechnol. 2012, 12, 6621–6630. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharyya, S.K. Smarter-lighter-greener: Research innovations for the automotive sector. Proc. R. Soc. A Math. Phys. Eng. Sci. 2015, 471, 20140938. [Google Scholar] [CrossRef] [PubMed]
- Lyu, M.Y.; Choi, T.G. Research trends in polymer materials for use in lightweight vehicles. Int. J. Precis. Eng. Manuf. 2015, 16, 213–220. [Google Scholar] [CrossRef]
- Luo, T.; Wei, X.; Huang, X.; Huang, L.; Yang, F. Tribological properties of Al2O3 nanoparticles as lubricating oil additives. Ceram. Int. 2014, 40, 7143–7149. [Google Scholar] [CrossRef]
- Werner, M.; Kohly, W.; Simic, M. Nanotechnologies in Automobiles-Innovation Potentials in Hesse for the Automotive Industry and Its Subcontractors; Hessian Ministry of Economics, Transport, Urban and Regional Development: Wiesbaden, Germany, 2008. [Google Scholar]
- Alkhazraji, A.N. Enhancement of Mechanical Properties and Handling Characteristic of Tire Rubber Using Different Percentage of Nano Aluminum Oxide and Carbon Black. SMR 2018, 20, 100. [Google Scholar]
- Sidik, N.A.C.; Yazid, M.N.A.W.M.; Mamat, R. A review on the application of nanofluids in vehicle engine cooling system. Int. Commun. Heat Mass Transf. 2015, 68, 85–90. [Google Scholar] [CrossRef] [Green Version]
- Che Sidik, N.A.; Witri Mohd Yazid, M.N.A.; Mamat, R. Recent advancement of nanofluids in engine cooling system. Renew. Sustain. Energy Rev. 2017, 75, 137–144. [Google Scholar] [CrossRef] [Green Version]
- Srinivasan, V.; Kumar, P.G.S. Review on Nanoparticles in CI Engines with a New and Better Proposal on Stabilisation; IJIRSET: Hyderabad, India, 2016; pp. 1656–1668. [Google Scholar]
- Kole, M.; Dey, T.K. Viscosity of alumina nanoparticles dispersed in car engine coolant. Exp. Therm. Fluid Sci. 2010, 34, 677–683. [Google Scholar] [CrossRef]
- Kulkarni, D.P.; Vajjha, R.S.; Das, D.K.; Oliva, D. Application of aluminum oxide nanofluids in diesel electric generator as jacket water coolant. Appl. Therm. Eng. 2008, 28, 1774–1781. [Google Scholar] [CrossRef]
- Liu, H.; Bai, M.; Qu, Y. The impact of oil-based diamond nanofluids on diesel engine performance. In Proceedings of the FISITA 2012 World Automotive Congress; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Vasheghani, M.; Marzbanrad, E.; Zamani, C.; Aminy, M.; Raissi, B. Thermal Conductivity and Viscosity of TiO2−Engine Oil Nanofluids. Nanosci. Technol. An Int. J. 2013, 4, 145–156. [Google Scholar] [CrossRef]
- Peyghambarzadeh, S.M.; Hashemabadi, S.H.; Naraki, M.; Vermahmoudi, Y. Experimental study of overall heat transfer coefficient in the application of dilute nanofluids in the car radiator. Appl. Therm. Eng. 2013, 52, 8–16. [Google Scholar] [CrossRef]
- Naraki, M.; Peyghambarzadeh, S.M.; Hashemabadi, S.H.; Vermahmoudi, Y. Parametric study of overall heat transfer coefficient of CuO/water nanofluids in a car radiator. Int. J. Therm. Sci. 2013, 66, 82–90. [Google Scholar] [CrossRef]
- Hussein, A.M.; Bakar, R.A.; Kadirgama, K.; Sharma, K.V. Heat transfer enhancement using nanofluids in an automotive cooling system. Int. Commun. Heat Mass Transf. 2014, 53, 195–202. [Google Scholar] [CrossRef]
- Ali, M.; El-Leathy, A.M.; Al-Sofyany, Z. The effect of nanofluid concentration on the cooling system of vehicles radiator. Adv. Mech. Eng. 2014, 2014, 1–13. [Google Scholar] [CrossRef]
- Peyghambarzadeh, S.M.; Hashemabadi, S.H.; Hoseini, S.M.; Seifi Jamnani, M. Experimental study of heat transfer enhancement using water/ethylene glycol based nanofluids as a new coolant for car radiators. Int. Commun. Heat Mass Transf. 2011, 38, 1283–1290. [Google Scholar] [CrossRef]
- Ebrahimi, M.; Farhadi, M.; Sedighi, K.; Akbarzade, S. Experimental investigation of force convection heat transfer in a car radiator filled with SiO2-water nanofluid. Int. J. Eng. Trans. B Appl. 2014, 27, 333–340. [Google Scholar] [CrossRef]
- Soukht Saraee, H.; Jafarmadar, S.; Taghavifar, H.; Ashrafi, S.J. Reduction of emissions and fuel consumption in a compression ignition engine using nanoparticles. Int. J. Environ. Sci. Technol. 2015, 12, 2245–2252. [Google Scholar] [CrossRef] [Green Version]
- Mitchell, M.R.; Link, R.E.; Kao, M.-J.; Ting, C.-C.; Lin, B.-F.; Tsung, T.-T. Aqueous Aluminum Nanofluid Combustion in Diesel Fuel. J. Test. Eval. 2007, 36, 186–190. [Google Scholar] [CrossRef]
- Suresh, S.; Saravanan, P.; Jayamoorthy, K.; Ananda Kumar, S.; Karthikeyan, S. Development of silane grafted ZnO core shell nanoparticles loaded diglycidyl epoxy nanocomposites film for antimicrobial applications. Mater. Sci. Eng. C 2016, 64, 286–292. [Google Scholar] [CrossRef] [PubMed]
- Prabhu, S.; Poulose, E.K. Silver nanoparticles: Mechanism of antimicrobial action, synthesis, medical applications, and toxicity effects. Int. Nano Lett. 2012, 2. [Google Scholar] [CrossRef]
- Dakal, T.C.; Kumar, A.; Majumdar, R.S.; Yadav, V. Mechanistic basis of antimicrobial actions of silver nanoparticles. Front. Microbiol. 2016, 7, 720654. [Google Scholar] [CrossRef] [PubMed]
- Charpentier, P.A.; Burgess, K.; Wang, L.; Chowdhury, R.R.; Lotus, A.F.; Moula, G. Nano-TiO2/polyurethane composites for antibacterial and self-cleaning coatings. Nanotechnology 2012, 23, 425606. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Zhang, C.; Du, Z.; Li, H.; Zou, W. Functionalization of MWCNTs with silver nanoparticles decorated polypyrrole and their application in antistatic and thermal conductive epoxy matrix nanocomposite. RSC Adv. 2016, 6, 31782–31789. [Google Scholar] [CrossRef]
- Liu, Z.; Ren, G.; Zhang, T.; Yang, Z. Action potential changes associated with the inhibitory effects on voltage-gated sodium current of hippocampal CA1 neurons by silver nanoparticles. Toxicology 2009, 264, 179–184. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Han, E.; Ke, W. Effect of nanoparticles on the improvement in fire-resistant and anti-ageing properties of flame-retardant coating. Surf. Coat. Technol. 2006, 200, 5706–5716. [Google Scholar] [CrossRef]
- Yang, Y.H.; Li, Y.C.; Shields, J.; Davis, R.D. Layer double hydroxide and sodium montmorillonite multilayer coatings for the flammability reduction of flexible polyurethane foams. J. Appl. Polym. Sci. 2015, 132. [Google Scholar] [CrossRef]
- Norouzi, M.; Zare, Y.; Kiany, P. Nanoparticles as effective flame retardants for natural and synthetic textile polymers: Application, mechanism, and optimization. Polym. Rev. 2015, 55, 1–30. [Google Scholar] [CrossRef]
- Thostenson, E.T.; Ren, Z.; Chou, T.W. Advances in the science and technology of carbon nanotubes and their composites: A review. Compos. Sci. Technol. 2001, 61, 1899–1912. [Google Scholar] [CrossRef]
- Edwards, E.; Brantley, C.; Ruffin, P.B. Overview of Nanotechnology in Military and Aerospace Applications. Nanotechnol. Commer. Manuf. Process. Prod. 2017, 133–176. [Google Scholar]
- Hashish, M. Trimming of CFRP Aircraft Components. In Proceedings of the 2013 WJTA-IMCA Conference and Expo, Houston, TX, USA, 9–11 September 2013. [Google Scholar]
- Verma, P.; Saini, P.; Malik, R.S.; Choudhary, V. Excellent electromagnetic interference shielding and mechanical properties of high loading carbon-nanotubes/polymer composites designed using melt recirculation equipped twin-screw extruder. Carbon N. Y. 2015, 89, 308–317. [Google Scholar] [CrossRef]
- Verma, P.; Saini, P.; Choudhary, V. Designing of carbon nanotube/polymer composites using melt recirculation approach: Effect of aspect ratio on mechanical, electrical and EMI shielding response. Mater. Des. 2015, 88, 269–277. [Google Scholar] [CrossRef]
- Gohardani, O.; Elola, M.C.; Elizetxea, C. Potential and prospective implementation of carbon nanotubes on next generation aircraft and space vehicles: A review of current and expected applications in aerospace sciences. Prog. Aerosp. Sci. 2014, 70, 42–68. [Google Scholar] [CrossRef]
- Altin Karataş, M.; Gökkaya, H. A review on machinability of carbon fiber reinforced polymer (CFRP) and glass fiber reinforced polymer (GFRP) composite materials. Def. Technol. 2018, 14, 318–326. [Google Scholar] [CrossRef]
- Jacob, A. Hexcel’s Composites Ready to Fly on the A350 XWB. Available online: https://www.materialstoday.com/composite-applications/features/hexcels-composites-ready-to-fly-on-the-a350-xwb/ (accessed on 18 April 2019).
- O’Donnell, S.E. Impact of nanomaterials in airframes on commercial aviation. In Proceedings of the AIAA Third Annual Aviation Technology, Integration, and Operations (ATIO) Technology Conference, Denver, CO, USA, 17–19 November 2003; The American Institute of Aeronautics and Astronautics: Denver, CO, USA, 2003. [Google Scholar]
- O’Donnell, S.; Sprong, K.; Haltli, B. Potential impact of carbon nanotube reinforced polymer composite on commercial aircraft performance and economics. In Proceedings of the AIAA 4th Aviation Technology, Integration and Operations (ATIO) Forum, Chicago, IL, USA, 20–22 September 2004; p. 6402. [Google Scholar]
- Bal, S.; Samal, S.S. Carbon nanotube reinforced polymer composites—a state of the art. Bull. Mater. Sci. 2007, 30, 379. [Google Scholar] [CrossRef]
- Veedu, V.P.; Cao, A.; Li, X.; Ma, K.; Soldano, C.; Kar, S.; Ajayan, P.M.; Ghasemi-Nejhad, M.N. Multifunctional composites using reinforced laminae with carbon-nanotube forests. Nat. Mater. 2006, 5, 457–462. [Google Scholar] [CrossRef]
- Amendola, A.; Mingione, G. On the problem of icing for modern civil aircraft. Air Space Eur. 2002, 3, 214–217. [Google Scholar] [CrossRef]
- Gohardani, O.; Hammond, D.W. Ice adhesion to pristine and eroded polymer matrix composites reinforced with carbon nanotubes for potential usage on future aircraft. Cold Reg. Sci. Technol. 2013, 96, 8–16. [Google Scholar] [CrossRef]
- Chu, H.; Zhang, Z.; Liu, Y.; Leng, J. Self-heating fiber reinforced polymer composite using meso/macropore carbon nanotube paper and its application in deicing. Carbon N. Y. 2014, 66, 154–163. [Google Scholar] [CrossRef]
- Gou, J.; Tang, Y.; Liang, F.; Zhao, Z.; Firsich, D.; Fielding, J. Carbon nanofiber paper for lightning strike protection of composite materials. Compos. Part B Eng. 2010, 41, 192–198. [Google Scholar] [CrossRef]
- Sweers, G.; Birch, B.; Gokcen, J. Lightning Strikes: Protection, Inspection and Repair. Aero Q. 2012, 4, 19–28. [Google Scholar]
- Martinelli, A.; Carru, G.A.; D’Ilario, L.; Caprioli, F.; Chiaretti, M.; Crisante, F.; Francolini, I.; Piozzi, A. Wet adhesion of buckypaper produced from oxidized multiwalled carbon nanotubes on soft animal tissue. ACS Appl. Mater. Interfaces 2013, 5, 4340–4349. [Google Scholar] [CrossRef] [PubMed]
- Shamberger, P.J.; Fisher, T.S. Cooling power and characteristic times of composite heatsinks and insulants. Int. J. Heat Mass Transf. 2018, 117, 1205–1215. [Google Scholar] [CrossRef]
- Goli, P.; Legedza, S.; Dhar, A.; Salgado, R.; Renteria, J.; Balandin, A.A. Graphene-enhanced hybrid phase change materials for thermal management of Li-ion batteries. J. Power Sources 2014, 248, 37–43. [Google Scholar] [CrossRef] [Green Version]
- Barako, M.T.; Gambin, V.; Tice, J. Integrated nanomaterials for extreme thermal management: A perspective for aerospace applications. Nanotechnology 2018, 29, 154003. [Google Scholar] [CrossRef]
- Arasu, A.V.; Mujumdar, A.S. Numerical study on melting of paraffin wax with Al 2O 3 in a square enclosure. Int. Commun. Heat Mass Transf. 2012, 39, 8–16. [Google Scholar] [CrossRef]
- Rathod, V.T.; Kumar, J.S.; Jain, A. Polymer and ceramic nanocomposites for aerospace applications. Appl. Nanosci. 2017, 7, 519–548. [Google Scholar] [CrossRef]
- Chakradhar, R.P.S.; Prasad, G.; Bera, P.; Anandan, C. Stable superhydrophobic coatings using PVDF-MWCNT nanocomposite. Appl. Surf. Sci. 2014, 301, 208–215. [Google Scholar] [CrossRef]
- Kireitseu, M.V.; Tomlinson, G.R.; Williams, R.A. Next generation advanced nanoparticle-based damping solutions for aerospace components. Architecture 2005, 3, 3–5. [Google Scholar]
- Poland, C.A.; Duffin, R.; Kinloch, I.; Maynard, A.; Wallace, W.A.H.; Seaton, A.; Stone, V.; Brown, S.; MacNee, W.; Donaldson, K. Carbon nanotubes introduced into the abdominal cavity of mice show asbestos-like pathogenicity in a pilot study. Nat. Nanotechnol. 2008, 3, 423–428. [Google Scholar] [CrossRef] [PubMed]
- Jang, J.S.; Lee, G.W.; Kim, H.I.; Hong, S.Y.; Ci, L.; Nam, J.D.; Suhr, J. High-damping and conducting epoxy nanocomposite using both zinc oxide particles and carbon nanofibers. J. Mater. 2018, 4, 187–193. [Google Scholar] [CrossRef]
- Asmatulu, R.; Mahmud, G.A.; Hille, C.; Misak, H.E. Effects of UV degradation on surface hydrophobicity, crack, and thickness of MWCNT-based nanocomposite coatings. Prog. Org. Coat. 2011, 72, 553–561. [Google Scholar] [CrossRef]
- Alishahi, A. Application of Nanotechnology in Marine-Based Products: A Review. J. Aquat. Food Prod. Technol. 2015, 24, 533–543. [Google Scholar] [CrossRef]
- Ng, K.W.; Lam, W.H.; Pichiah, S. A review on potential applications of carbon nanotubes in marine current turbines. Renew. Sustain. Energy Rev. 2013, 28, 331–339. [Google Scholar] [CrossRef]
- Keshri, A.K.; Huang, J.; Singh, V.; Choi, W.; Seal, S.; Agarwal, A. Synthesis of aluminum oxide coating with carbon nanotube reinforcement produced by chemical vapor deposition for improved fracture and wear resistance. Carbon N. Y. 2010, 48, 431–442. [Google Scholar] [CrossRef]
- Mardare, L.; Benea, L. Development of Anticorrosive Polymer Nanocomposite Coating for Corrosion Protection in Marine Environment. In IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2017. [Google Scholar]
- Zhang, Q.; Nghiem, J.; Silverberg, G.J.; Vecitis, C.D. Semiquantitative performance and mechanism evaluation of carbon nanomaterials as cathode coatings for microbial fouling reduction. Appl. Environ. Microbiol. 2015, 81, 4744–4755. [Google Scholar] [CrossRef]
- Callow, J.A.; Callow, M.E. Trends in the development of environmentally friendly fouling-resistant marine coatings. Nat. Commun. 2011, 2, 210–244. [Google Scholar] [CrossRef]
- Ciriminna, R.; Bright, F.V.; Pagliaro, M. Ecofriendly antifouling marine coatings. ACS Sustain. Chem. Eng. 2015, 3, 559–565. [Google Scholar] [CrossRef]
- Wu, D.Y.; Meure, S.; Solomon, D. Self-healing polymeric materials: A review of recent developments. Prog. Polym. Sci. 2008, 33, 479–522. [Google Scholar] [CrossRef]
- Valsami-Jones, E.; Lynch, I. How safe are nanomaterials? Science (80-) 2015, 350, 388–389. [Google Scholar] [CrossRef] [PubMed]
- Rossi, E.M.; Pylkkänen, L.; Koivisto, A.J.; Nykäsenoja, H.; Wolff, H.; Savolainen, K.; Alenius, H. Inhalation exposure to nanosized and fine TiO2 particles inhibits features of allergic asthma in a murine model. Part. Fibre Toxicol. 2010, 7, 35. [Google Scholar] [CrossRef] [PubMed]
- Savolainen, K.; Alenius, H. Disseminating widely. Nat. Nanotechnol. 2013, 8, 72. [Google Scholar] [CrossRef] [PubMed]
- Díaz-Soler, B.M.; Martínez-Aires, M.D.; López-Alonso, M. Potential risks posed by the use of nano-enabled construction products: A perspective from coordinators for safety and health matters. J. Clean. Prod. 2019, 220, 33–44. [Google Scholar] [CrossRef]
- Roco, M.C. The long view of nanotechnology development: The National Nanotechnology Initiative at 10 years. J. Nanoparticle Res. 2011, 13, 427–445. [Google Scholar] [CrossRef]
- Saber, A.T.; Lamson, J.S.; Jacobsen, N.R.; Ravn-Haren, G.; Hougaard, K.S.; Nyendi, A.N.; Wahlberg, P.; Madsen, A.M.; Jackson, P.; Wallin, H.; et al. Particle-Induced Pulmonary Acute Phase Response Correlates with Neutrophil Influx Linking Inhaled Particles and Cardiovascular Risk. PLoS ONE 2013, 8, e69020. [Google Scholar] [CrossRef]
- Kinaret, P.; Ilves, M.; Fortino, V.; Rydman, E.; Karisola, P.; Lähde, A.; Koivisto, J.; Jokiniemi, J.; Wolff, H.; Savolainen, K.; et al. Inhalation and Oropharyngeal Aspiration Exposure to Rod-Like Carbon Nanotubes Induce Similar Airway Inflammation and Biological Responses in Mouse Lungs. ACS Nano 2017, 11, 291–303. [Google Scholar] [CrossRef]
- Bondarenko, O.; Juganson, K.; Ivask, A.; Kasemets, K.; Mortimer, M.; Kahru, A. Toxicity of Ag, CuO and ZnO nanoparticles to selected environmentally relevant test organisms and mammalian cells in vitro: A critical review. Arch. Toxicol. 2013, 87, 1181–1200. [Google Scholar] [CrossRef]
- Van Broekhuizen, P.; Van Veelen, W.; Streekstra, W.H.; Schulte, P.; Reijnders, L. Exposure limits for nanoparticles: Report of an international workshop on nano reference values. Ann. Occup. Hyg. 2012, 56, 515–524. [Google Scholar]
- Shi, J.P.; Evans, D.E.; Khan, A.A.; Harrison, R.M. Sources and concentration of nanoparticles (10 nm diameter) in the urban atmosphere. Atmos. Environ. 2001, 35, 1193–1202. [Google Scholar] [CrossRef]
- Bauer, C.; Buchgeister, J.; Hischier, R.; Poganietz, W.R.; Schebek, L.; Warsen, J. Towards a framework for life cycle thinking in the assessment of nanotechnology. J. Clean. Prod. 2008, 16, 910–926. [Google Scholar] [CrossRef]
- Morose, G. The 5 principles of “Design for Safer Nanotechnology”. J. Clean. Prod. 2010, 18, 285–289. [Google Scholar] [CrossRef]
- Kipen, H.M.; Laskin, D.L. Smaller is not always better: Nanotechnology yields nanotoxicology. Am. J. Physiol. Cell. Mol. Physiol. 2005, 289, L696–L697. [Google Scholar] [CrossRef] [PubMed]
- Ding, L.; Stilwell, J.; Zhang, T.; Elboudwarej, O.; Jiang, H.; Selegue, J.P.; Cooke, P.A.; Gray, J.W.; Chen, F.F. Molecular characterization of the cytotoxic mechanism of multiwall carbon nanotubes and nano-onions on human skin fibroblast. Nano Lett. 2005, 5, 2448–2464. [Google Scholar] [CrossRef] [PubMed]
- Herzog, E.; Byrne, H.J.; Casey, A.; Davoren, M.; Lenz, A.G.; Maier, K.L.; Duschl, A.; Oostingh, G.J. SWCNT suppress inflammatory mediator responses in human lung epithelium in vitro. Toxicol. Appl. Pharmacol. 2009, 234, 378–390. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dong, L.; Witkowski, C.M.; Craig, M.M.; Greenwade, M.M.; Joseph, K.L. Cytotoxicity effects of different surfactant molecules conjugated to carbon nanotubes on human astrocytoma cells. Nanoscale Res. Lett. 2009, 4, 1517–1523. [Google Scholar] [CrossRef] [PubMed]
- Yu, T.; Malugin, A.; Ghandehari, H. Impact of silica nanoparticle design on cellular toxicity and hemolytic activity. ACS Nano 2011, 5, 5717–5728. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Zhang, K.; Zhao, J.; Liu, X.; Xing, B. Adsorption and inhibition of butyrylcholinesterase by different engineered nanoparticles. Chemosphere 2010, 79, 86–92. [Google Scholar] [CrossRef] [PubMed]
- Kato, S.; Aoshima, H.; Saitoh, Y.; Miwa, N. Biological safety of lipoFullerene composed of squalane and fullerene-C60 upon mutagenesis, photocytotoxicity, and permeability into the human skin tissue. Basic Clin. Pharmacol. Toxicol. 2009, 104, 483–487. [Google Scholar] [CrossRef]
- Lu, Z.; Li, C.M.; Bao, H.; Qiao, Y.; Toh, Y.; Yang, X. Mechanism of antimicrobial activity of CdTe quantum dots. Langmuir 2008, 24, 5445–5452. [Google Scholar] [CrossRef]
- Sergent, J.A.; Paget, V.; Chevillard, S. Toxicity and genotoxicity of Nano-SiO2 on human epithelial intestinal HT-29 cell line. Ann. Occup. Hyg. 2012, 56, 622–630. [Google Scholar] [PubMed]
- Yu, T.; Greish, K.; McGill, L.D.; Ray, A.; Ghandehari, H. Influence of geometry, porosity, and surface characteristics of silica nanoparticles on acute toxicity: Their vasculature effect and tolerance threshold. ACS Nano 2012, 6, 2289–2301. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.L.; Fan, C.H.; Zhu, H.S. Photo-induced cytotoxicity of malonic acid [C60]fullerene derivatives and its mechanism. Toxicol. Vitro 2002, 16, 41–46. [Google Scholar] [CrossRef]
- Ramot, Y.; Steiner, M.; Morad, V.; Leibovitch, S.; Amouyal, N.; Cesta, M.F.; Nyska, A. Pulmonary thrombosis in the mouse following intravenous administration of quantum dot-labeled mesenchymal cells. Nanotoxicology 2010, 4, 98–105. [Google Scholar] [CrossRef] [PubMed]
- Chang, E.; Thekkek, N.; Yu, W.W.; Colvin, V.L.; Drezek, R. Evaluation of quantum dot cytotoxicity based on intracellular uptake. Small 2006, 2, 1412–1417. [Google Scholar] [CrossRef] [PubMed]
- Jin, C.; Tang, Y.; Yang, F.G.; Li, X.L.; Xu, S.; Fan, X.Y.; Huang, Y.Y.; Yang, Y.J. Cellular toxicity of TiO2 nanoparticles in anatase and rutile crystal phase. Biol. Trace Elem. Res. 2011, 141, 3–15. [Google Scholar] [CrossRef]
- Yu, W.W.; Chang, E.; Falkner, J.C.; Zhang, J.; Al-somali, A.M.; Sayes, C.M.; Johns, J.; Drezek, R.; Colvin, V.L. Forming Biocompatible and Nonaggregated Nanocrystals in Water Using Amphiphilic Polymers. J. Am. Chem. Soc. 2007, 129, 2871–2879. [Google Scholar] [CrossRef]
- Hong, J.; Zhang, Y.Q. Murine liver damage caused by exposure to nano-titanium dioxide. Nanotechnology 2016, 27, 112001. [Google Scholar] [CrossRef] [Green Version]
- Ivask, A.; Kurvet, I.; Kasemets, K.; Blinova, I.; Aruoja, V.; Suppi, S.; Vija, H.; Titma, T.; Heinlaan, M.; Visnapuu, M.; et al. Size-Dependent Toxicity of Silver Nanoparticles to Bacteria, Yeast, Algae, Crustaceans and Mammalian Cells In Vitro. PLoS ONE 2014, 9, e102108. [Google Scholar] [CrossRef]
- Midander, K.; Cronholm, P.; Karlsson, H.L.; Elihn, K.; Leygraf, C.; Wallinder, I.O. Surface Characteristics, Copper Release, and Toxicity of Nano- and Micrometer-Sized Copper and Copper (II) Oxide Particles: A Cross-Disciplinary Study. Small 2009, 5, 389–399. [Google Scholar] [CrossRef]
- Zheng, X.; Su, Y.; Chen, Y.; Wan, R.; Li, M.; Huang, H.; Li, X. Carbon nanotubes affect the toxicity of CuO nanoparticles to denitrification in marine sediments by altering cellular internalization of nanoparticle. Sci. Rep. 2016, 6, 27748. [Google Scholar] [CrossRef] [PubMed]
- Hanna, S.K.; Miller, R.J.; Lenihan, H.S. Accumulation and Toxicity of Copper Oxide Engineered Nanoparticles in a Marine Mussel. Nanomaterials 2014, 4, 535–547. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peng, C.; Shen, C.; Zheng, S.; Yang, W.; Hu, H.; Liu, J.; Shi, J. Transformation of CuO Nanoparticles in the Aquatic Environment: Influence of pH, Electrolytes and Natural Organic Matter. Nanomaterials 2017, 7, 326. [Google Scholar] [CrossRef] [PubMed]
- Kasemets, K.; Ivask, A.; Dubourguier, H.C.; Kahru, A. Toxicity of nanoparticles of ZnO, CuO and TiO2 to yeast Saccharomyces cerevisiae. Toxicol. Vitro 2009, 23, 1116–1122. [Google Scholar] [CrossRef] [PubMed]
- Lai, H.; Ph, D.; Chen, W.; Ph, D.; Chiang, L.; Ph, D. Free Radical Scavenging Activity of Fullerenol on the Ischemia-reperfusion Intestine in Dogs. World J. Surg. 2000, 24, 450–454. [Google Scholar] [CrossRef] [PubMed]
- Kreyling, W.G.; Semmler-behnke, M.; Seitz, J.; Scymczak, W. Size dependence of the translocation of inhaled iridium and carbon nanoparticle aggregates from the lung of rats to the blood and secondary target organs. Inhal. Toxicol. 2009, 21, 55–60. [Google Scholar] [CrossRef]
- Larese, F.; Mauro, M.; Adami, G.; Bovenzi, M.; Crosera, M. Nanoparticles skin absorption: New aspects for a safety profile evaluation. Regul. Toxicol. Pharmacol. 2015, 72, 310–322. [Google Scholar] [CrossRef]
- Fatkhutdinova, L.M.; Khaliullin, T.O.; Vasil, O.L.; Zalyalov, R.R.; Musta, I.G.; Kisin, E.R.; Birch, M.E.; Yanamala, N.; Shvedova, A.A. Fibrosis biomarkers in workers exposed to MWCNTs. Toxicol. Appl. Pharmacol. 2016, 299, 125–131. [Google Scholar] [CrossRef] [Green Version]
- Foss, S.; Evan, H.Æ.; Anja, S.M.Æ.; Borling, P.; Stuer-Lauridsen, F.; Baun, A. Categorization framework to aid exposure assessment of nanomaterials in consumer products. Ecotoxicology 2008, 17, 438–447. [Google Scholar]
- Soto, K.F.; Garza, K.M.; Shi, Y.; Murr, L.E. Direct contact cytotoxicity assays for filter-collected, carbonaceous (soot) nanoparticulate material and observations of lung cell response. Atmos. Environ. 2008, 42, 1970–1982. [Google Scholar] [CrossRef]
- Peters, A.; Rückerl, R.; Cyrys, J. Lessons from air pollution epidemiology for studies of engineered nanomaterials. J. Occup. Environ. Med. 2011, 53, S8–S13. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.S.; Choi, Y.C.; Shin, J.H.; Lee, J.H.; Lee, Y.; Park, S.Y.; Baek, J.E.; Park, J.D.; Ahn, K.; Yu, I.J. Health surveillance study of workers who manufacture multi-walled carbon nanotubes. Nanotoxicology 2015, 9, 802–811. [Google Scholar] [CrossRef] [PubMed]
- Liou, S.H.; Tsai, C.S.J.; Pelclova, D.; Schubauer-Berigan, M.K.; Schulte, P.A. Assessing the first wave of epidemiological studies of nanomaterial workers. J. Nanoparticle Res. 2015, 17, 413. [Google Scholar] [CrossRef] [PubMed]
- Klaine, S.J.; Alvarez, P.J.J.; Batley, G.E.; Fernandes, T.F.; Handy, R.D.; Lyon, D.Y.; Mahendra, S.; McLaughlin, M.J.; Lead, J.R. Nanomaterials in the environment: Behavior, fate, bioavailability, and effects. Environ. Toxicol. Chem. 2008, 27, 1825–1851. [Google Scholar] [CrossRef] [PubMed]
- Fu, P.P.; Xia, Q.; Hwang, H.M.; Ray, P.C.; Yu, H. Mechanisms of nanotoxicity: Generation of reactive oxygen species. J. Food Drug Anal. 2014, 22, 64–75. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hougaard, K.S.; Campagnolo, L.; Chavatte-Palmer, P.; Tarrade, A.; Rousseau-Ralliard, D.; Valentino, S.; Park, M.V.D.Z.; de Jong, W.H.; Wolterink, G.; Piersma, A.H.; et al. A perspective on the developmental toxicity of inhaled nanoparticles. Reprod. Toxicol. 2015, 56, 118–140. [Google Scholar] [CrossRef] [PubMed]
- Smulders, S.; Larue, C.; Sarret, G.; Castillo-Michel, H.; Vanoirbeek, J.; Hoet, P.H.M. Lung distribution, quantification, co-localization and speciation of silver nanoparticles after lung exposure in mice. Toxicol. Lett. 2015, 238, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Bruns, B. Open sourcing nanotechnology research and development: Issues and opportunities. Nanotechnology 2001, 12, 198–210. [Google Scholar] [CrossRef]
- Chamorro, S.; Gutiérrez, L.; Vaquero, M.P.; Verdoy, D.; Salas, G.; Luengo, Y.; Brenes, A.; José Teran, F. Safety assessment of chronic oral exposure to iron oxide nanoparticles. Nanotechnology 2015, 26, 205101. [Google Scholar] [CrossRef] [PubMed]
- Sáez de Guinoa, A.; Zambrana-Vasquez, D.; Alcalde, A.; Corradini, M.; Zabalza-Bribián, I. Environmental assessment of a nano-technological aerogel-based panel for building insulation. J. Clean. Prod. 2017, 161, 1404–1415. [Google Scholar] [CrossRef] [Green Version]
- Oomen, A.G.; Steinhäuser, K.G.; Bleeker, E.A.J.; van Broekhuizen, F.; Sips, A.; Dekkers, S.; Wijnhoven, S.W.P.; Sayre, P.G. Risk assessment frameworks for nanomaterials: Scope, link to regulations, applicability, and outline for future directions in view of needed increase in efficiency. NanoImpact 2018, 9, 1–13. [Google Scholar] [CrossRef]
- Chong, W.C.; Chung, Y.T.; Teow, Y.H.; Zain, M.M.; Mahmoudi, E.; Mohammad, A.W. Environmental impact of nanomaterials in composite membranes: Life cycle assessment of algal membrane photoreactor using polyvinylidene fluoride—Composite membrane. J. Clean. Prod. 2018, 202, 591–600. [Google Scholar] [CrossRef]
- Tolaymat, T.; El Badawy, A.; Genaidy, A.; Abdelraheem, W.; Sequeira, R. Analysis of metallic and metal oxide nanomaterial environmental emissions. J. Clean. Prod. 2017, 143, 401–412. [Google Scholar] [CrossRef]
- Roco, M.C.; Hersam, M.C.; Mirkin, C.A.; Nel, A.; Grainger, D.; Alvarez, P.J.; Badesha, S.; Castranova, V.; Ferrari, M.; Godwin, H.; et al. Nanotechnology Environmental, Health, and Safety Issues. In Nanotechnology Research Directions for Societal Needs in 2020; Springer Science and Business Media LLC: Berlin, Germany, 2011; pp. 159–220. [Google Scholar]
- Erdely, A.; Dahm, M.M.; Schubauer-Berigan, M.K.; Chen, B.T.; Antonini, J.M.; Hoover, M.D. Bridging the gap between exposure assessment and inhalation toxicology: Some insights from the carbon nanotube experience. J. Aerosol Sci. 2016, 99, 157–162. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hendren, C.O.; Lowry, G.V.; Unrine, J.M.; Wiesner, M.R. A functional assay-based strategy for nanomaterial risk forecasting. Sci. Total Environ. 2015, 536, 1029–1037. [Google Scholar] [CrossRef] [Green Version]
- Nowack, B.; Boldrin, A.; Caballero, A.; Hansen, S.F.; Gottschalk, F.; Heggelund, L.; Hennig, M.; Mackevica, A.; Maes, H.; Navratilova, J.; et al. Meeting the Needs for Released Nanomaterials Required for Further Testing—The SUN Approach. Environ. Sci. Technol. 2016, 50, 2747–2753. [Google Scholar] [CrossRef] [PubMed]
- Sellers, K.; Deleebeeck, N.M.E.; Messiean, M.; Jackson, M.; Bleeker, E.A.J.; Sijm, D.; Van Broekhuizen, F.A. Grouping Nanomaterials: A Strategy towards Grouping and Read-Across; Rijksinstituut voor Volksgezondheid en Milieu RIVM: Bilthoven, The Netherlands, 2015; ISBN 9069602806. [Google Scholar]
- Glisovic, S.; Pesic, D.; Stojiljkovic, E.; Golubovic, T.; Krstic, D.; Prascevic, M.; Jankovic, Z. Emerging technologies and safety concerns: A condensed review of environmental life cycle risks in the nano-world. Int. J. Environ. Sci. Technol. 2017, 14, 2301–2320. [Google Scholar] [CrossRef]
- Cinelli, M.; Coles, S.R.; Sadik, O.; Karn, B.; Kirwan, K. A framework of criteria for the sustainability assessment of nanoproducts. J. Clean. Prod. 2016, 126, 277–287. [Google Scholar] [CrossRef] [Green Version]
- Helland, A.; Kastenholz, H. Development of nanotechnology in light of sustainability. J. Clean. Prod. 2008, 16, 885–888. [Google Scholar] [CrossRef]
- von Gleich, A.; Steinfeldt, M.; Petschow, U. A suggested three-tiered approach to assessing the implications of nanotechnology and influencing its development. J. Clean. Prod. 2008, 16, 899–909. [Google Scholar] [CrossRef]
- Thorlaksen, P.; Yebra, D.M.; Català, P. Hydrogel—Based Third Generation Fouling Release Coatings. Gallois. 2007. Available online: http://www.gallois.be/ggmagzine_2010/gg_05_09_2010_218.pdf (accessed on 10 May 2019).
- Kang, S.; Pinault, M.; Pfefferle, L.D.; Elimelech, M. Single-walled carbon nanotubes exhibit strong antimicrobial activity. Langmuir 2007, 23, 8670–8673. [Google Scholar] [CrossRef] [PubMed]
- Kato, S.; Aoshima, H.; Saitoh, Y.; Miwa, N. Biological safety of liposome-fullerene consisting of hydrogenated lecithin, glycine soja sterols, and fullerene-C60 upon photocytotoxicity and bacterial reverse mutagenicity. Toxicol. Ind. Health 2009, 25, 197–203. [Google Scholar] [CrossRef] [PubMed]
- Khanna, P.; Ong, C.; Bay, B.; Baeg, G. Nanotoxicity: An Interplay of Oxidative Stress, Inflammation and Cell Death. Nanomaterials 2015, 5, 1163–1180. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Takemura, M. Japan’s engagement in health, environmental and societal aspects of nanotechnology. J. Clean. Prod. 2008, 16, 1003–1005. [Google Scholar] [CrossRef]
- Zhao, F.; Zhao, Y.; Wang, C. Activities related to health, environmental and societal aspects of nanotechnology in China. J. Clean. Prod. 2008, 16, 1000–1002. [Google Scholar] [CrossRef]
- Reijnders, L. Cleaner nanotechnology and hazard reduction of manufactured nanoparticles. J. Clean. Prod. 2006, 14, 124–133. [Google Scholar] [CrossRef]
Reference | Nano Fluids Types | Advantages |
---|---|---|
[65] | Al2O3−EG | Al2O3−EG enhances the thermal conductivity by about 4.5% with addition of Al2O3 nanoparticles (1.5 vol%). |
[67] | Nanodiamond–engine oil | Nanofluid enhances the engine performance by increasing the engine power by about 1.15% and reducing the fuel consumption by about 1.27% compared to simple engine oil. |
[73] | Al2O3−water, Al2O3−EG, Al2O3−EG/water (5–20 vol% of EG) | Heat transfer performance was enhanced about 40% with the addition of 1.0 vol% of nanoparticles of Al2O compared to the pure fluid. |
[72] | Al2O3−water | The maximum improvements of coolant heat transfer coefficient, heat transfer rate and Nusselt number were 14.7%, 14.8%, and 9.5%, respectively. |
[69] | CuO−water, Fe2O3−water | 0.65 vol% CuO−water nanoparticles enhanced the heat transfer coefficient by up to 9%. |
[70] | CuO−water | CuO−water is beneficial to improve the overall heat transfer coefficient. With 0.4 vol% CuO concentration of nanofluid the heat transfer coefficient was enhanced about 8% as compared to pure water. |
[71] | SiO2−water, TiO2−water | The maximum Nusselt number improvements for SiO2 and TiO2 nanofluids were 22.5% and 11%, respectively |
[74] | SiO2−water | With 0.4 vol% of SiO2 nanoparticles at 60 °C the heat transfer enhancement was about 9.3% as compared to the pure fluid. |
Nanomaterials | Toxic Effects | References |
---|---|---|
Carbon nanotubes | Antibacterial | [139,140,141] |
Damage of cell membrane | ||
necrosis/apoptosis | ||
Hinder the respiratory functions | ||
DNA damage | ||
Induce granulomas and atherosclerotic lesion | ||
Lung damage | ||
SiO2 | Slightly toxic effect | [139,142,143] |
Toxic to marine algae | ||
Apoptosis | ||
Up-regulation of tumor necrosis factor—alpha genes | ||
Inflammatory and immune responses | ||
C60 derivatives | Bactericidal for Gram-positive bacteria | [140,144] |
Oxidative cytotoxicity | ||
Accumulation in liver | ||
Induces gliomas, sarcomas in mice as well as in human cells | ||
Quantum dots | Bacterial toxicity | [141,145,146] |
Partials uptake and damage to DNA | ||
TiO2 | Growth inhibition and acute lethality | [123,147,148] |
Bactericidal for gram-positive bacteria | ||
Elimination of photosynthetic activity | ||
Oxidative damage due to ROS | ||
Liver damage | ||
CuO nanoparticles | Freshwater algae toxicity | [149,150,151,152,153] |
Yeast toxicity | ||
Damaging DNA | ||
Acute toxicity to kidney, spleen, and liver |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shafique, M.; Luo, X. Nanotechnology in Transportation Vehicles: An Overview of Its Applications, Environmental, Health and Safety Concerns. Materials 2019, 12, 2493. https://doi.org/10.3390/ma12152493
Shafique M, Luo X. Nanotechnology in Transportation Vehicles: An Overview of Its Applications, Environmental, Health and Safety Concerns. Materials. 2019; 12(15):2493. https://doi.org/10.3390/ma12152493
Chicago/Turabian StyleShafique, Muhammad, and Xiaowei Luo. 2019. "Nanotechnology in Transportation Vehicles: An Overview of Its Applications, Environmental, Health and Safety Concerns" Materials 12, no. 15: 2493. https://doi.org/10.3390/ma12152493
APA StyleShafique, M., & Luo, X. (2019). Nanotechnology in Transportation Vehicles: An Overview of Its Applications, Environmental, Health and Safety Concerns. Materials, 12(15), 2493. https://doi.org/10.3390/ma12152493