Nanoparticles in Construction Materials and Other Applications, and Implications of Nanoparticle Use
Abstract
:- Nanotechnology Consumer Products Inventory (CPI) lists 1814 consumer products containing nanomaterials in 2015
- Nanoparticles valued for high surface area and low density
- Chronic TiO2 exposure yielded negative health effects in mice
- Ni, Co, and Pd potentially hazardous when absorbed through skin
- Nanoparticles listed as “Enabling Technology” in the EU
- Busy roads generate up to 9 kg of road particles per day, some nanoparticles (NPs)
- 97% of watershed sediment tested in Japan, France, and USA contained NPs
1. Introduction
2. Nanoparticle Definitions
2.1. Engineered Nanoparticles
2.2. Natural Nanoparticles
2.3. Incidental Nanoparticles
3. Methods
4. Nanoparticles in Construction Materials
4.1. Concrete
4.2. Asphalt Concrete
4.3. Bricks
4.4. Mortar
4.5. Timber
4.6. Steel
5. Environmental, Social, and Economic Benefits
6. Risk Assessment and Analysis
6.1. Toxicological Analysis
6.2. Epidemiological Analysis
6.3. Life Cycle Exposure Pathway
6.3.1. Manufacturing of Nanomaterial
6.3.2. Use in Construction Site
6.3.3. Demolition
6.3.4. Recycling
6.3.5. Long-Term Release
7. Health Implications
7.1. Pulmonary Exposure
7.2. Dermal Exposure
- -
- TiO2 and ZnO nanoparticles were unable to pass through skin rendering them safe to dermal exposure.
- -
- Ag nanoparticles can penetrate the skin but their ability to permeate is undetermined. Their use in medical dressings may result in high skin absorption, potentially affecting internal organs.
- -
- Au nanoparticles can penetrate the skin, but their permeability is undetermined. Concern in terms of being a hazardous material is low as gold is a noble metal, and, thus, non-toxic to human health.
- -
- Ni, Co, and Pd are considered more hazardous due to the high release of ions in the body [86].
8. Environmental Implications
9. Regulation
9.1. United States
9.2. Australia
9.3. Europe
9.4. China
9.5. International Bodies
10. Discussion and Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Feynman, R.P. There’s Plenty of Room at the Bottom: An Invitation to Enter a New Field of Physics. In Proceedings of the Annual meeting of the American Physical Society, California Institute of Technology, Pasadena, CA, USA, 29 December 1959; California Institute of Technology: Pasadena, CA, USA, 1960. [Google Scholar]
- Taniguchi, N.; Arakawa, C.; Kobayashi, T. On the basic concept of nano-technology. In Proceedings of the International Conference on Production Engineering, Tokyo, Japan, 26–29 August 1974. [Google Scholar]
- What It Is and How It Works. Available online: https://www.nano.gov/nanotech-101/what (accessed on 4 September 2018).
- US Environmental Protection Agency nanotechnology white paper, Washington, DC. Available online: https://nepis.epa.gov/Exe/ZyNET.exe/60000EHU.TXT?ZyActionD=ZyDocument&Client=EPA&Index=2006+Thru+2010&Docs=&Query=&Time=&EndTime=&SearchMethod=1&TocRestrict=n&Toc=&TocEntry=&QField=&QFieldYear=&QFieldMonth=&QFieldDay=&IntQFieldOp=0&ExtQFieldOp=0&XmlQuery=&File=D%3A%5Czyfiles%5CIndex%20Data%5C06thru10%5CTxt%5C00000000%5C60000EHU.txt&User=ANONYMOUS&Password=anonymous&SortMethod=h%7C-&MaximumDocuments=1&FuzzyDegree=0&ImageQuality=r75g8/r75g8/x150y150g16/i425&Display=hpfr&DefSeekPage=x&SearchBack=ZyActionL&Back=ZyActionS&BackDesc=Results%20page&MaximumPages=1&ZyEntry=1&SeekPage=x&ZyPURL (accessed on 12 September 2019).
- And, F.B.; Taliani, C.; Chen, J.; Komanduri, R.; Biscarini, F. Nanomanufacturing and Processing—Research, Education, Infrastructure, Security, Resource. J. Manuf. Sci. Eng. 2002, 124, 489–490. [Google Scholar]
- Sobolev, K.; Shah, S.P. Nanotechnology in Construction, Proceedings of NICOM5; Springer: Cham, Switzerland, 2015; pp. 3–285. [Google Scholar]
- Yang, G.; Park, S.J. Deformation of Single Crystals, Polycrystalline Materials, and Thin Films: A Review. Materials 2019, 12, 2003. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Mahendra, S.; Alvarez, P.J.J. Nanomaterials in the Construction Industry: A Review of Their Applications and Environmental Health and Safety Considerations. ACS Nano 2010, 4, 3580–3590. [Google Scholar] [CrossRef] [PubMed]
- Nanomaterials Market—Allied Market Research. Available online: https://www.alliedmarketresearch.com/nano-materials-market (accessed on 17 September 2019).
- Teizer, J.; Venugopal, M.; Teizer, W.; Felkl, J. Nanotechnology and its impact on construction: bridging the gap between researchers and industry professionals. Constr. Eng. Manag. 2011, 138, 594–604. [Google Scholar] [CrossRef]
- Vance, M.E.; Kuiken, T.; Vejerano, E.P.; McGinnis, S.P.; Hochella Jr, M.F.; Rejeski, D.; Hull, M.S. Nanotechnology in the real world: Redeveloping the nanomaterial consumer products inventory. Beilstein J. Nanotechnol. 2015, 6, 1769–1780. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murthy, S.K. Nanoparticles in modern medicine: State of the art and future challenges. Int. J. Nanomed. 2007, 2, 129–141. [Google Scholar]
- Rae, A. Real life applications of nanotechnology in electronics. OnBoard Technol. 2006, 2006, 28. [Google Scholar]
- Raj, S.; Jose, S.; Sumod, U.S.; Sabitha, M. Nanotechnology in cosmetics: Opportunities and challenges. J. Pharm. Bioallied Sci. 2012, 4, 186–193. [Google Scholar] [CrossRef]
- Nazari, A.; Riahi, S. Al2O3 nanoparticles in concrete and different curing media. Energy Build. 2011, 43, 1480–1488. [Google Scholar] [CrossRef]
- Ortiz, O.; Castells, F.; Sonnemann, G. Sustainability in the construction industry: A review of recent developments based on LCA. Constr. Build. Mater. 2009, 23, 28–39. [Google Scholar] [CrossRef]
- Mohamed, A.S.Y. Nano-Innovation in Construction, A New Era of Sustainability. In Proceedings of the International Conference on Environment and Civil Engineering, Pattaya, Thailand, 24–25 April 2015; ICEACE: Pattaya, Thailand. [Google Scholar]
- Tiwari, A.; Chowdhury, S. An overview of application of nanotechnology in construction materials. In Proceedings of the International Symposium on Engineering under Uncertainty: Safety Assessment and Management (ISEUSAM-2012); Springer: New Delhi, India; pp. 483–492.
- Construction and Demolition Debris Generation in the United States. Available online: https://www.epa.gov/sites/production/files/2016-12/documents/construction_and_demolition_debris_generation_2014_11302016_508.pdf (accessed on 5 May 2018).
- De La Calle, I.; Menta, M.; Séby, F. Current trends and challenges in sample preparation for metallic nanoparticles analysis in daily products and environmental samples: A review. Spectrochim. Acta Part B At. Spectrosc. 2016, 125, 66–96. [Google Scholar] [CrossRef]
- Pacheco-Torgal, F.; Jalali, S. Nanotechnology: Advantages and drawbacks in the field of construction and building materials. Constr. Build. Mater. 2011, 25, 582–590. [Google Scholar] [CrossRef] [Green Version]
- Xing, B.; Vecitis, C.D.; Senesi, N. Engineered Nanoparticles and the Environment: Biophysicochemical Processes and Toxicity; John Wiley & Sons: Somerset, NJ, USA, 2016. [Google Scholar]
- Engineered Nanoparticles: Current Knowledge about OHS Risks and Prevention Measures. Available online: https://www.irsst.qc.ca/media/documents/PubIRSST/R-656.pdf (accessed on 9 August 2019).
- Statista Research Department 2015. Global carbon nanotube demand 2014–2022. Available online: https://www.statista.com/statistics/714477/global-demand-for-carbon-nanotubes/ (accessed on 20 September 2019).
- Piccinno, F.; Gottschalk, F.; Seeger, S.; Nowack, B. Industrial production quantities and uses of ten engineered nanomaterials in Europe and the world. J. Nanoparticle Res. 2012, 14, 1109. [Google Scholar] [CrossRef]
- Strambeanu, N.; Demetrovici, L.; Dragos, D. Nanoparticles’ Promises and Risks: Characterization Manipulation, Potential Hazards to Humanity the Environment; Springer: Cham, Switzerland, 2015; pp. 9–19. [Google Scholar]
- Rogers, M.A. Naturally occurring nanoparticles in food. Curr. Opin. Food Sci. 2016, 7, 14–19. [Google Scholar] [CrossRef]
- Grigoratos, T.; Martini, G. Non-exhaust traffic related emissions. Brake and tyre wear PM, JRC Science and Policy Reports. Jt. Res. Cent. 2014. [Google Scholar] [CrossRef]
- Gualtieri, M.L.; Gualtieri, A.F.; Gagliardi, S.; Ruffini, P.; Ferrari, R.; Hanuskova, M. Thermal conductivity of fired clays: Effects of mineralogical and physical properties of the raw materials. Appl. Clay Sci. 2010, 49, 269–275. [Google Scholar] [CrossRef]
- Organisation for Economic Co-operation and Development (OECD). International Year Book and Statesmen’s Who’s Who 2014; Brill: Leiden, The Netherlands, 2014. [Google Scholar]
- Mohajerani, A.; Suter, D.; Jeffrey-Bailey, T.; Song, T.; Arulrajah, A.; Horpibulsuk, S.; Law, D. Recycling waste materials in geopolymer concrete. Clean Technol. Environ. Policy 2019, 21, 493–515. [Google Scholar] [CrossRef]
- Salemi, N.; Behfarnia, K. Effect of nano-particles on durability of fiber-reinforced concrete pavement. Constr. Build. Mater. 2013, 48, 934–941. [Google Scholar] [CrossRef]
- Patel, A.; Rathod, H.; Sharma, N. An overview on application of Nanotechnology in construction industry. Int. J. Innov. Res. Sci. Eng. Technol. 2013, 2, 6094–6098. [Google Scholar]
- Khitab, A.; Tausif Arshad, M. Nano construction materials. Adv. Mater. Sci. 2014, 38, 181–189. [Google Scholar]
- Konsta-Gdoutos, M.S.; Metaxa, Z.S.; Shah, S.P. Multi-scale mechanical and fracture characteristics and early-age strain capacity of high performance carbon nanotube/cement nanocomposites. Cem. Concr. Compos. 2010, 32, 110–115. [Google Scholar] [CrossRef]
- Rahman, M.T.; Hainin, M.R.; Abu Bakar, W.A.W. Use of waste cooking oil, tire rubber powder and palm oil fuel ash in partial replacement of bitumen. Constr. Build. Mater. 2017, 150, 95–104. [Google Scholar] [CrossRef]
- Zhang, H.L.; Su, M.M.; Zhao, S.F.; Zhang, Y.P.; Zhang, Z.P. High and low temperature properties of nano-particles/polymer modified asphalt. Constr. Build. Mater. 2016, 114, 323–332. [Google Scholar] [CrossRef]
- Mubaraki, M.; Ali, S.I.A.; Ismail, A.; Yusoff, N.I.M. Rheological Evaluation of Asphalt Cements Modified with ASA Polymer and Al2O3 Nanoparticles. Procedia Eng. 2016, 143, 1276–1284. [Google Scholar] [CrossRef] [Green Version]
- Fang, C.; Yu, X.; Yu, R.; Liu, P.; Qiao, X. Preparation and properties of isocyanate and nano particles composite modified asphalt. Constr. Build. Mater. 2016, 119, 113–118. [Google Scholar] [CrossRef]
- Mohajerani, A.; Tanriverdi, Y.; Nguyen, B.T.; Wong, K.K.; Dissanayake, H.N.; Johnson, L.; Whitfield, D.; Thomson, G.; Alqattan, E.; Rezaei, A. Physico-mechanical properties of asphalt concrete incorporated with encapsulated cigarette butts. Constr. Build. Mater. 2017, 153, 69–80. [Google Scholar] [CrossRef]
- Nejad, F.M.; Azarhoosh, A.; Hamedi, G.; Azarhoosh, M. Influence of using nonmaterial to reduce the moisture susceptibility of hot mix asphalt. Constr. Build. Mater. 2012, 31, 384–388. [Google Scholar] [CrossRef]
- Jin, J.; Chen, B.; Liu, L.; Liu, R.; Qian, G.; Wei, H.; Zheng, J. A Study on Modified Bitumen with Metal Doped Nano-TiO2 Pillared Montmorillonite. Materials 2019, 12, 1910. [Google Scholar] [CrossRef]
- Sarkar, D.; Pal, M.; Sarkar, A. Laboratory Evaluation of Asphalt Concrete Prepared with Over Burnt Brick Aggregate Treated by Zycosoil. Int. J. Civ. Environ. Struct. Constr. Archit. Eng. 2014, 8, 1302–1306. [Google Scholar]
- Mohajerani, A.; Kadir, A.A.; Larobina, L. A practical proposal for solving the world’s cigarette butt problem: Recycling in fired clay bricks. Waste Manag. 2016, 52, 228–244. [Google Scholar] [CrossRef]
- Mohajerani, A.; Ukwatta, A.; Jeffrey-Bailey, T.; Swaney, M.; Ahmed, M.; Rodwell, G.; Bartolo, S.; Eshtiaghi, N.; Setunge, S. A Proposal for Recycling the World’s Unused Stockpiles of Treated Wastewater Sludge (Biosolids) in Fired-Clay Bricks. Buildings 2019, 9, 14. [Google Scholar] [CrossRef]
- Niroumand, H.; Zain, M.; Alhosseini, S.N. The Influence of Nano-clays on Compressive Strength of Earth Bricks as Sustainable Materials. Procedia-Soc. Behav. Sci. 2013, 89, 862–865. [Google Scholar] [CrossRef] [Green Version]
- Stefanidou, M.; Karozou, A. Testing the effectiveness of protective coatings on traditional bricks. Constr. Build. Mater. 2016, 111, 482–487. [Google Scholar] [CrossRef]
- Mohajerani, A.; Vajna, J.; Ellcock, R. Chromated copper arsenate timber: A review of products, leachate studies and recycling. J. Clean. Prod. 2018, 179, 292–307. [Google Scholar] [CrossRef]
- Kumar, A.; Gupta, A.; Sharma, K.V.; Nasir, M. Use of aluminum oxide nanoparticles in wood composites to enhance the heat transfer during hot-pressing. Holz als Roh- und Werkst. 2013, 71, 193–198. [Google Scholar] [CrossRef]
- Goffredo, G.B.; Citterio, B.; Biavasco, F.; Stazi, F.; Barcelli, S.; Munafò, P. Nanotechnology on wood: The effect of photocatalytic nanocoatings against Aspergillus niger. J. Cult. Heritage 2017, 27, 125–136. [Google Scholar] [CrossRef]
- Hegazy, M.; Badawi, A.; El Rehim, S.A.; Kamel, W. Influence of copper nanoparticles capped by cationic surfactant as modifier for steel anti-corrosion paints. Egypt. J. Pet. 2013, 22, 549–556. [Google Scholar] [CrossRef] [Green Version]
- Kumar, P.; Morawska, L. Recycling concrete: An undiscovered source of ultrafine particles. Atmos. Environ. 2014, 90, 51–58. [Google Scholar] [CrossRef] [Green Version]
- Rana, A.; Kalla, P.; Verma, H.; Mohnot, J. Recycling of dimensional stone waste in concrete: A review. J. Clean. Prod. 2016, 135, 312–331. [Google Scholar] [CrossRef]
- Li, W.; Luo, Z.; Long, C.; Wu, C.; Duan, W.H.; Shah, S.P. Effects of nanoparticle on the dynamic behaviors of recycled aggregate concrete under impact loading. Mater. Des. 2016, 112, 58–66. [Google Scholar] [CrossRef]
- Hassellöv, M.; Readman, J.W.; Ranville, J.F.; Tiede, K. Nanoparticle analysis and characterization methodologies in environmental risk assessment of engineered nanoparticles. Ecotoxicology 2008, 17, 344–361. [Google Scholar] [CrossRef] [PubMed]
- Hristozov, D.; Malsch, I. Hazards and Risks of Engineered Nanoparticles for the Environment and Human Health. Sustainability 2009, 1, 1161–1194. [Google Scholar] [CrossRef] [Green Version]
- Knox, A. An overview of incineration and EFW technology as applied to the management of municipal solid waste (MSW), ONEIA Energy Subcommitte. 2005. Available online: http://www.durhamenvironmentwatch.org/Incinerator%20Files%20II/OverviewOfIncinerationAndEFWKnox.pdf (accessed on 17 September 2019).
- Roller, M. Carcinogenicity of inhaled nanoparticles. Inhal. Toxicol. 2009, 21, 144–157. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Mahendra, S.; Alvarez, P.; Bittnar, Z.; Bartos, P.J.; Němeček, J. Nanotechnology in Construction 3: Proceedings of the NICOM3; Springer: Prague, Czech Republic, 2009; pp. 1–435. [Google Scholar]
- Tsai, C.J.; Wu, C.H.; Leu, M.L.; Chen, S.C.; Huang, C.Y.; Tsai, P.J.; Ko, F.H. Dustiness test of nanopowders using a standard rotating drum with a modified sampling train. J. Nanopart. Res. 2009, 11, 121–131. [Google Scholar] [CrossRef]
- Kaluza, S.; Balderhaar, J.K.; Orthen, B.; Honnert, B.; Jankowska, E.; Pietrowski, P.; Rosell, M.; Tanarro, C.; Tejedor, J.; Zugasti, A. Literature Review—Workplace exposure to nanoparticles, Europoean Agency for Safety and Health at Work. 2009. Available online: https://osha.europa.eu/en/publications/literature_reviews/workplace_exposure_to_nanoparticles (accessed on 17 September 2019).
- Schneider, T. Evaluation and control of occupational health risks from nanoparticles; Nordic Council of Ministers: Copenhagen, Denmark, 2007; pp. 13–78. [Google Scholar]
- Barkoula, N.M.; Ioannou, C.; Aggelis, D.; Matikas, T. Optimization of nano-silica’s addition in cement mortars and assessment of the failure process using acoustic emission monitoring. Constr. Build. Mater. 2016, 125, 546–552. [Google Scholar] [CrossRef]
- Baek, S.C.; Kim, Y.C.; Choi, J.H.; Hong, W.H. Determination of the essential activity elements of an asbestos management system in the event of a disaster and their prioritization. J. Clean. Prod. 2016, 137, 414–426. [Google Scholar] [CrossRef]
- Kumar, A.; Prasad, M.N.V.; Maiti, S.K. Asbestos: Resource Recovery and Its Waste Management. Environmental Materials and Waste. Environ. Mater. Waste 2016, 285–305. [Google Scholar] [CrossRef]
- Kourmpanis, B.; Papadopoulos, A.; Moustakas, K.; Stylianou, M.; Haralambous, K.; Loizidou, M. Preliminary study for the management of construction and demolition waste. Waste Manag. Res. 2008, 26, 267–275. [Google Scholar] [CrossRef]
- Marianne, G. Cellulose Plastics. In Brydson’s Plastics Materials; Elsevier: Oxford, UK, 2017; p. 617. [Google Scholar]
- Myakonkaya, O.; Guibert, C.; Eastoe, J.; Grillo, I. Recovery of Nanoparticles Made Easy. Langmuir 2010, 26, 3794–3797. [Google Scholar] [CrossRef]
- Wiemann, M.; Vennemann, A.; Blaske, F.; Sperling, M.; Karst, U. Silver Nanoparticles in the Lung: Toxic Effects and Focal Accumulation of Silver in Remote Organs. Nanomaterials 2017, 7, 441. [Google Scholar] [CrossRef]
- Ahamed, M.; AlSalhi, M.S.; Siddiqui, M.; AlSalhi, P.M. Silver nanoparticle applications and human health. Clin. Chim. Acta 2010, 411, 1841–1848. [Google Scholar] [CrossRef] [PubMed]
- Grande, F.; Tucci, P. Titanium Dioxide Nanoparticles: a Risk for Human Health? Mini Rev. Med. Chem. 2016, 16, 762–769. [Google Scholar] [CrossRef] [PubMed]
- Donaldson, K.; Stone, V.; Gilmour, P.S.; Brown, D.M.; MacNee, W.; Malcolm, A.L.; Derwent, R.G. Ultrafine particles: mechanisms of lung injury. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2000, 358, 2741–2749. [Google Scholar] [CrossRef]
- Karlsson, H.L.; Cronholm, P.; Gustafsson, J.; Möller, L. Copper Oxide Nanoparticles Are Highly Toxic: A Comparison between Metal Oxide Nanoparticles and Carbon Nanotubes. Chem. Res. Toxicol. 2008, 21, 1726–1732. [Google Scholar] [CrossRef] [PubMed]
- Lai, J.C.K.; Lai, M.B.; Jandhyam, S.; Dukhande, V.V.; Bhushan, A.; Daniels, C.K.; Leung, S.W. Exposure to titanium dioxide and other metallic oxide nanoparticles induces cytotoxicity on human neural cells and fibroblasts. Int. J. Nanomed. 2008, 3, 533–545. [Google Scholar] [Green Version]
- Ickrath, P.; Wagner, M.; Scherzad, A.; Gehrke, T.; Burghartz, M.; Hagen, R.; Radeloff, K.; Kleinsasser, N.; Hackenberg, S. Time-Dependent Toxic and Genotoxic Effects of Zinc Oxide Nanoparticles after Long-Term and Repetitive Exposure to Human Mesenchymal Stem Cells. Int. J. Environ. Res. Public Heal. 2017, 14, 1590. [Google Scholar] [CrossRef]
- Helland, A.; Wick, P.; Koehler, A.; Schmid, K.; Som, C. Reviewing the Environmental and Human Health Knowledge Base of Carbon Nanotubes. Environ. Heal. Perspect. 2007, 115, 1125–1131. [Google Scholar] [CrossRef] [Green Version]
- Lin, W.; Huang, Y.W.; Zhou, X.D.; Ma, Y. In vitro toxicity of silica nanoparticles in human lung cancer cells. Toxicol. Appl. Pharmacol. 2006, 217, 252–259. [Google Scholar] [CrossRef]
- Donaldson, K.; Seaton, A. A short history of the toxicology of inhaled particles. Part. Fibre Toxicol. 2012, 9, 13. [Google Scholar] [CrossRef]
- Buchanan, C.M.; Gardner, R.M.; Komarek, R.J. Aerobic biodegradation of cellulose acetate. J. Appl. Polym. Sci. 1993, 47, 1709–1719. [Google Scholar] [CrossRef]
- Oravisjärvi, K.; Pietikäinen, M.; Ruuskanen, J.; Niemi, S.; Laurén, M.; Voutilainen, A.; Keiski, R.L.; Rautio, A. Diesel particle composition after exhaust after-treatment of an off-road diesel engine and modeling of deposition into the human lung. J. Aerosol Sci. 2014, 69, 32–47. [Google Scholar] [CrossRef]
- Perlman, R.L. Mouse models of human disease; An evolutionary perspective. Evol. Med. Public Health 2016, 2016, 170–176. [Google Scholar] [CrossRef] [PubMed]
- Justice, M.J.; Dhillon, P. Using the mouse to model human disease: increasing validity and reproducibility. Dis. Model. Mech. 2016, 9, 101–103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hong, F.; Ji, L.; Zhou, Y.; Wang, L. Retracted: Chronic nasal exposure to nanoparticulate TiO2 causes pulmonary tumorigenesis in male mice. Environ. Toxicol. 2017, 32, 1651–1657. [Google Scholar] [CrossRef] [PubMed]
- Gillespie, P.A.; Kang, G.S.; Elder, A.; Gelein, R.; Chen, L.; Moreira, A.L.; Koberstein, J.; Tchou-Wong, K.-M.; Gordon, T.; Chen, L.C. Pulmonary response after exposure to inhaled nickel hydroxide nanoparticles: short and long-term studies in mice. Nanotoxicology 2010, 4, 106–119. [Google Scholar] [CrossRef] [PubMed]
- Crosera, M.; Bovenzi, M.; Maina, G.; Adami, G.; Zanette, C.; Florio, C.; Larese, F.F. Nanoparticle dermal absorption and toxicity: a review of the literature. Int. Arch. Occup. Environ. Heal. 2009, 82, 1043–1055. [Google Scholar] [CrossRef] [PubMed]
- Filon, F.L.; Mauro, M.; Adami, G.; Bovenzi, M.; Crosera, M. Nanoparticles skin absorption: New aspects for a safety profile evaluation. Regul. Toxicol. Pharmacol. 2015, 72, 310–322. [Google Scholar] [CrossRef]
- Liu, J.; Jiang, G. Silver Nanoparticles in the Environment; Springer: Heidelberg, Germany, 2015; pp. 43–48. [Google Scholar]
- Bhatt, I.; Tripathi, B.N. Interaction of engineered nanoparticles with various components of the environment and possible strategies for their risk assessment. Chemosphere 2011, 82, 308–317. [Google Scholar] [CrossRef]
- Novotny, T.E.; Lum, K.; Smith, E.; Wang, V.; Barnes, R. Cigarettes Butts and the Case for an Environmental Policy on Hazardous Cigarette Waste. Int. J. Environ. Res. Public Heal. 2009, 6, 1691–1705. [Google Scholar] [CrossRef]
- Moerman, J.W.; Potts, G.E. Analysis of metals leached from smoked cigarette litter. Tob. Control. 2011, 20, i30–i35. [Google Scholar] [CrossRef] [Green Version]
- Slaughter, E.; Gersberg, R.M.; Watanabe, K.; Rudolph, J.; Stransky, C.; E Novotny, T. Toxicity of cigarette butts, and their chemical components, to marine and freshwater fish. Tob. Control. 2011, 20, i25–i29. [Google Scholar] [CrossRef] [PubMed]
- Osborne, O.J.; Lin, S.; Chang, C.H.; Ji, Z.; Yu, X.; Wang, X.; Lin, S.; Xia, T.; Nel, A.E. Organ-Specific and Size-Dependent Ag Nanoparticle Toxicity in Gills and Intestines of Adult Zebrafish. ACS Nano 2015, 9, 9573–9584. [Google Scholar] [CrossRef] [PubMed]
- Tahmoorian, F.; Samali, B.; Tam, V.W.; Yeaman, J. Evaluation of Mechanical Properties of Recycled Material for Utilization in Asphalt Mixtures. Appl. Sci. 2017, 7, 763. [Google Scholar] [CrossRef]
- Oliver, J. The Use of Recycled Crumb Rubber in Asphalt, Austroads Pavement Research Group (APRG). APRG Technical Note 1999, 10. Available online: https://www.google.com/search?q=94.+Oliver,+J.+The+Use+of+Recycled+Crumb+Rubber+in+Asphalt,+Austroads+Pavement+Research+Group+(APRG),+APRG+Technical+Note,+1999,+10.&rlz=1C1GCEA_enAU787AU787&tbm=isch&source=iu&ictx=1&fir=F_X8jF7k4ppWBM%253A%252CkRAt0JhOhvmjdM%252C_&vet=1&usg=AI4_-kQ8d-LHTTtE0R2JLlzgw2un3PMxug&sa=X&ved=2ahUKEwigxIelm97kAhWOWX0KHddtCYgQ9QEwCXoECAcQBg&cshid=1568941761188967#imgrc=ftUGj5j-e9mafM:&vet=1 (accessed on 12 September 2019).
- Guo, J.; Guo, J.; Wang, S.; Xu, Z. Asphalt modified with nonmetals separated from pulverized waste printed circuit boards. Environ. Sci. Technol. 2008, 43, 503–508. [Google Scholar] [CrossRef] [PubMed]
- Rauscher, H.; Rasmussen, K.; Sokull-Klüttgen, B. Regulatory Aspects of Nanomaterials in the EU. Chem. Ing. Tech. 2017, 89, 224–231. [Google Scholar] [CrossRef]
- Liu, D. Nanotechnology in China: Regulations and patents. Nanotechnol. Law Bus. 2008, 5, 465. [Google Scholar]
- Bai, C. Ascent of nanoscience in China. Science 2005, 309, 61–63. [Google Scholar] [CrossRef] [PubMed]
- OECD. Current Developments/Activities on The Safety Of Manufactured Nanomaterials. In No. 29 Series on the Safety of Manufactured Nanomaterials. In Proceedings of the 8th Meeting of the Working Party on Manufactured Nanomaterials, Paris, France,, 16–18 March 2011; 2011; 18. [Google Scholar]
- Jarvis, D.S.; Richmond, N. Regulation and governance of nanotechnology in China: Regulatory challenges and effectiveness. Eur. J. Law Technol. 2011, 2, 1–11. [Google Scholar]
- Paranavithana, S.; Mohajerani, A. Effects of recycled concrete aggregates on properties of asphalt concrete. Resour. Conserv. Recycl. 2006, 48, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Rasmussen, K.; González, M.; Kearns, P.; Sintes, J.R.; Rossi, F.; Sayre, P. Review of achievements of the OECD Working Party on Manufactured Nanomaterials’ Testing and Assessment Programme. From exploratory testing to test guidelines. Regul. Toxicol. Pharmacol. 2016, 74, 147–160. [Google Scholar] [CrossRef] [PubMed]
- Turgut, P.; Yesilata, B. Physico-mechanical and thermal performances of newly developed rubber-added bricks. Energy Build. 2008, 40, 679–688. [Google Scholar] [CrossRef]
- Veiseh, S.; Yousefi, A.A. The use of polystyrene in lightweight brick production Iranian. Polym. J. 2003, 12, 323–330. [Google Scholar]
- Kayali, O. High performance bricks from fly ash. In Proceedings of the World of Coal Ash Conference, Lexinton, Kentucky, 11–15 April 2005. [Google Scholar]
Application | Area | Nanoparticle Type | Major Applications |
---|---|---|---|
Construction | Concrete | Silica nanoparticles | • Reinforcement in mechanical strength • Rapid hydration |
Concrete | Titania nanoparticles | • Increased degree of hydration • Self-cleaning | |
Concrete | Carbon nanotubes | • Mechanical durability • Crack prevention | |
Asphalt concrete Timber | Aluminium oxide nanoparticles | • Increased serviceability | |
Bricks mortar | Clay nanoparticles | • Increased compressive strength • Increased surface roughness | |
Concrete | Iron oxide nanoparticles | • Increased compressive strength • Abrasion-resistant | |
Steel | Copper nanoparticles | • Weldability • Corrosion resistance; Formability | |
Asphalt concrete | Zycosoil | • Increased fatigue life • Higher compaction |
Approach | Process | Nanoparticle Type |
---|---|---|
Chemical process | Vapour phase reactions | - Carbides - Nitrides - Oxides - Metallic alloys |
Reactions and precipitations in liquid media | - Metals - Oxides | |
Reactions in solid media | - Metals - Oxides | |
Supercritical fluids with chemical reactions | - Metals - Oxides - Nitrides | |
Sol-gel techniques | - Oxides | |
Physical process | Evaporation or condensation under partial or inert pressure | - Iron (Fe) - Nickel (Ni) - Cobalt (Co) - Copper (Cu) - Aluminium (Al) - Palladium (Pd) - Platinum (Pt) - Oxides |
Laser pyrolysis | - Silicon (Si) - Silicon carbide (SiC) - Silicon carbonitride (SiCN) - Silaketenylidene (SiCO) - Silicon nitride (Si3N4) - Titanium carbide (TiC) - Titanium dioxide (TiO2) - Fullerenes - Carbonated soot - Metal oxides | |
Plasma synthesis | - Metal oxides | |
Combustion | - Metal oxides | |
Ionic or electronic irradiation | - Production of nanopores - Nanostructures immobilised in matrix | |
Mechanical activation of powder metallurgy | - Ceramics - Metallics - Metal oxides - Polymers - Semiconductors | |
Consolidation and densification | - Varied | |
Deformation via torsion, lamination or friction | - Metal oxides |
Nanoparticle Type | Affected Cell/Organ/System | References |
---|---|---|
Silver nanoparticle (Ag NP) | - Immune system - Lungs - Liver - Brain - Carcinogenesis - Vascular system - Reproductive organs - Fibroblast | [69] [69,70] [70] [70] [70] [70] [70] [70] |
Titanium dioxide (TiO2) | - Inflammation in lungs - DNA damage - Metabolic changes - Carcinogenesis - Cell death | [71,72] [71,73] [71] [71] [74] |
Zinc oxide Nanoparticles (ZnO NP) | - Cell proliferation | [75] |
Iron oxide (Fe3O4) | - Oxidative DNA damage | [73] |
Copper zinc ferrite (CuZnFe2O4) | - DNA damage - Oxidative DNA damage | [73] [73] |
Carbon nanotubes (CNT) | - DNA damage - Oxidative stress - Inflammation | [73] [76] [76] |
Copper oxide (CuO) | - DNA damage - Oxidative DNA damage | [73] [73] |
Silica nanoparticles (SiO2) | - Bronchoalveolar carcinoma-derived cells | [77] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mohajerani, A.; Burnett, L.; Smith, J.V.; Kurmus, H.; Milas, J.; Arulrajah, A.; Horpibulsuk, S.; Abdul Kadir, A. Nanoparticles in Construction Materials and Other Applications, and Implications of Nanoparticle Use. Materials 2019, 12, 3052. https://doi.org/10.3390/ma12193052
Mohajerani A, Burnett L, Smith JV, Kurmus H, Milas J, Arulrajah A, Horpibulsuk S, Abdul Kadir A. Nanoparticles in Construction Materials and Other Applications, and Implications of Nanoparticle Use. Materials. 2019; 12(19):3052. https://doi.org/10.3390/ma12193052
Chicago/Turabian StyleMohajerani, Abbas, Lucas Burnett, John V. Smith, Halenur Kurmus, John Milas, Arul Arulrajah, Suksun Horpibulsuk, and Aeslina Abdul Kadir. 2019. "Nanoparticles in Construction Materials and Other Applications, and Implications of Nanoparticle Use" Materials 12, no. 19: 3052. https://doi.org/10.3390/ma12193052
APA StyleMohajerani, A., Burnett, L., Smith, J. V., Kurmus, H., Milas, J., Arulrajah, A., Horpibulsuk, S., & Abdul Kadir, A. (2019). Nanoparticles in Construction Materials and Other Applications, and Implications of Nanoparticle Use. Materials, 12(19), 3052. https://doi.org/10.3390/ma12193052