Enhancement of Photorefraction in Vanadium-Doped Lithium Niobate through Iron and Zirconium Co-Doping
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples Preparation
2.2. Measurements
3. Results
3.1. The Photorefractive Properties
3.2. The UV–Vis Absorption Spectra
3.3. The OH− Absorption Spectra
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Boes, A.; Corcoran, B.; Chang, L.; Bowers, J.; Mitchell, A. Status and potential of lithium niobate on insulator (LNOI) for photonic integrated circuits. Laser Photonics Rev. 2018, 12, 1700256. [Google Scholar] [CrossRef]
- Wang, C.; Li, Z.; Kim, M.H.; Xiong, X.; Ren, X.F.; Guo, G.C.; Yu, N.; Lončar, M. Metasurface-assisted phase-matching-free second harmonic generation in lithium niobate waveguides. Nat. Commun. 2017, 8, 2098. [Google Scholar] [CrossRef] [PubMed]
- Kong, Y.; Bo, F.; Wang, W.; Zheng, D.; Liu, H.; Zhang, G.; Rupp, R.; Xu, J. Recent progress in lithium niobate: Optical damage, defect simulation, and on-chip devices. Adv. Mater. 2019, 1806452, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Rao, A.; Fathpour, S. Compact lithium niobate electro optic modulators. IEEE J. Sel. Top. Quant. 2018, 24, 3400114. [Google Scholar] [CrossRef]
- Volk, T.; Wöhlecke, M. Lithium Niobate: Defects, Photorefraction and Ferroelectric Switching; Springer: Berlin, Germany, 2008. [Google Scholar]
- Wong, K.K. Properties of Lithium Niobate; The Institution of Electrical Engineers: London, UK, 2002. [Google Scholar]
- Lisa, D.; Kevin, C.; Thomas, F. HDS-coming of age. Nat. Photonics 2008, 2, 403–405. [Google Scholar]
- Coufal, H.J.; Psaltis, D.; Sincerbox, G.T. Holographic Data Storage; Springer: Berlin, Germany, 2000. [Google Scholar]
- Chen, F.S.; LaMacchia, J.T.; Fraser, D.B. Holographic Storage in Lithium Niobate. Appl. Phys. Lett. 1968, 13, 223–225. [Google Scholar] [CrossRef]
- Barachevsky, V.A. The current status of the development of light-sensitive media for holography (a review). Opt. Spectrosc. 2018, 124, 373–407. [Google Scholar] [CrossRef]
- Sabel, T.; Lensen, M.C. Volume Holography: Novel Materials, Methods and Applications. In Holographic Materials and Optical Systems; Naydenova, I., Ed.; IntechOpen: London, UK, 2017. [Google Scholar] [Green Version]
- Giang, H.N.; Kinashi, K.; Sakai, W.; Tsutsumi, N. Photorefractive response and real-time holographic application of a poly(4-(diphenylamino)benzyl acrylate)-based composite. Polym. J. 2013, 46, 59–66. [Google Scholar] [CrossRef]
- Dai, L.; Wang, L.; Liu, C.; Han, X.; Yan, Z.; Xu, Y. OH absorption and holographic storage properties of Sc(0, 1, 2, 3):Ru:Fe:LiNbO3 crystals. RSC Adv. 2018, 8, 5145–5150. [Google Scholar] [CrossRef]
- Buse, K.; Adibi, A.; Psaltis, D. Non-volatile holographic storage in doubly doped lithium niobate crystals. Nature 1998, 393, 665–668. [Google Scholar] [CrossRef] [Green Version]
- Kong, Y.; Wu, S.; Liu, S.; Chen, S.; Xu, J. Fast photorefractive response and high sensitivity of Zr and Fe codoped LiNbO3 crystals. Appl. Phys. Lett. 2008, 92, 251107. [Google Scholar]
- Kong, Y.; Liu, F.; Tian, T.; Liu, S.; Chen, S.; Rupp, R.; Xu, J. Fast responsive nonvolatile holographic storage in LiNbO3 triply doped with Zr, Fe, and Mn. Opt. Lett. 2009, 34, 3896–3898. [Google Scholar] [CrossRef]
- Kong, Y.; Liu, S.; Xu, J. Recent advances in the photorefraction of doped lithium niobate crystals. Materials 2012, 5, 1954–1971. [Google Scholar] [CrossRef]
- Dong, Y.; Liu, S.; Kong, Y.; Chen, S.; Rupp, R.; Xu, J. Fast photorefractive response of vanadium-doped lithium niobate in the visible region. Opt. Lett. 2012, 37, 1841–1843. [Google Scholar] [CrossRef] [PubMed]
- Dong, Y.; Liu, S.; Li, W.; Kong, Y.; Chen, S.; Xu, J. Improved ultraviolet photorefractive properties of vanadium-doped lithium niobate crystals. Opt. Lett. 2011, 36, 1779–1781. [Google Scholar] [CrossRef] [PubMed]
- Lengyel, K.; Péter, Á.; Kovács, L.; Corradi, G.; Pálfalvi, L.; Hebling, J.; Unferdorben, M.; Dravecz, G.; Hajdara, I.; Szaller, Z.; et al. Growth, defect structure, and THz application of stoichiometric lithium niobate. Appl. Phys. Rev. 2015, 2, 040601. [Google Scholar] [CrossRef] [Green Version]
- Pálfalvi, L.; Hebling, J.; Almási, G.; Péter, Á.; Polgár, K.; Lengyel, K.; Szipöcs, R. Nonlinear refraction and absorption of Mg doped stoichiometric and congruent LiNbO3. J. Appl. Phys. 2004, 95, 902. [Google Scholar] [CrossRef]
- Hesselink, L.; Orlov, S.S.; Liu, A.; Akella, A.; Lande, D.; Neurgaonkar, R.R. Photorefractive materials for nonvolatile volume holographic data storage. Science 1998, 282, 1089–1094. [Google Scholar] [CrossRef]
- Tian, T.; Kong, Y.; Liu, S.; Li, W.; Chen, S.; Rupp, R.; Xu, J. Fast UV-Vis photorefractive response of Zr and Mg co-doped LiNbO3:Mo. Opt. Express 2013, 21, 10460–10466. [Google Scholar] [CrossRef]
- Zheng, D.; Wang, W.; Wang, S.; Qu, D.; Liu, H.; Kong, Y.; Liu, S.; Chen, S.; Rupp, R.; Xu, J. Real-time dynamic holographic display realized by bismuth and magnesium co-doped lithium niobate. Appl. Phys. Lett. 2019, 114, 241903. [Google Scholar] [CrossRef]
- Zheng, D.; Kong, Y.; Liu, S.; Chen, M.; Chen, S.; Zhang, L.; Rupp, R.; Xu, J. The simultaneous enhancement of photorefraction and optical damage resistance in MgO and Bi2O3 co-doped LiNbO3 crystals. Sci. Rep. 2016, 6, 20308. [Google Scholar] [CrossRef]
- Saeed, S.; Zheng, D.; Liu, H.; Xue, L.; Wang, W.; Zhu, L.; Hu, M.; Liu, S.; Chen, S.; Zhang, L.; et al. Rapid response of photorefraction in vanadium and magnesium co-doped lithium niobate. J. Phys. D Appl. Phys. 2019, 52, 405303. [Google Scholar] [CrossRef]
- Fan, Y.; Li, L.; Li, Y.; Sun, X.; Zhao, X. Hybrid density functional theory study of vanadium doping in stoichiometric and congruent LiNbO3. Phys. Rev. B 2019, 99, 035147. [Google Scholar] [CrossRef]
- Xu, Z.; Xu, S.; Xu, Y.; Wang, R. Study on photorefractive property of Mg:Fe:LiNbO3 crystal. In Holography, Diffractive Optics, and Applications II; The International Society for Optics and Photonics: Bellingham, WA, USA, 2005; Volume 5636, pp. 505–511. [Google Scholar]
- Hukriede, J.; Kip, D.; Kratzig, E. Investigation of titanium- and copper-in diffused channel waveguides in lithium niobate and their application as holographic filters for infrared light. J. Opt. A 2000, 2, 481–487. [Google Scholar] [CrossRef]
- Bhatt, R.; Bhaumik, I.; Ganesamoorthy, S.; Bright, R.; Soharab, M.; Karnal, A.; Gupta, P.K. Control of intrinsic defects in lithium niobate single crystal for optoelectronic applications. Crystals 2017, 7, 23. [Google Scholar] [CrossRef]
- Bhatt, R.; Bhaumik, I.; Ganesamoorthy, S.; Karnal, A.; Swami, M.K.; Patel, H.S.; Gupta, P.K. Urbach tail and bandgap analysis in near stoichiometric LiNbO3 crystals. Phys. Status Solidi A 2012, 209, 176–180. [Google Scholar] [CrossRef]
- Foldvari, I.; Polgar, K.; Voszka, R.; Balasany, H.N. A simple method to determine the real composition of LiNbO3 Crystals. Cryst. Res. Technol. 1984, 19, 1659–1661. [Google Scholar] [CrossRef]
- Yükselici, M.H.; Bulut, D.; Ömür, B.C.; Bozkurt, A.A.; Allahverdi, C. Optical properties of iron-doped lithium niobate crystal depending on iron content and temperature. Phys. Status Solidi B 2014, 251, 1265–1269. [Google Scholar] [CrossRef]
- Kong, Y.; Liu, S.; Zhao, Y.; Liu, H.; Chen, S.; Xu, J. Highly optical damage resistant crystal: Zirconium-oxide-doped lithium niobate. Appl. Phys. Lett. 2007, 91, 081908. [Google Scholar] [CrossRef]
- Long, S.W.; Ma, D.C.; Zhu, Y.Z.; Lin, S.P.; Wang, B. Effects of Zr4+ co-doping on the spectroscopic properties and yellow light emissions of Dy3+ in LiNbO3 single crystals. Opt. Mater. Express 2016, 6, 3354. [Google Scholar] [CrossRef]
- Kovács, L.; Szaller, Z.; Lengyel, K.; Corradi, G. Hydroxyl ions in stoichiometric LiNbO3 crystals doped with optical damage resistant ions. Opt. Mater. 2014, 37, 55–58. [Google Scholar] [CrossRef]
- Kovács, L.; Lengyel, K.; Szalay, V. Combination transitions due to stretching and vibrations of OH ions in LiNbO3. Opt. Lett. 2011, 36, 3714–3716. [Google Scholar] [CrossRef]
- Schirmer, O.F.; Imlau, M.; Merschjann, C. Bulk photovoltaic effect of LiNbO3:Fe and its small-polaron-based microscopic interpretation. Phys. Rev. B 2011, 83, 165106. [Google Scholar] [CrossRef]
- Sanson, A.; Zaltron, A.; Argiolas, N.; Sada, C.; Bazzan, M.; Schmidt, W.G.; Sanna, S. Polaronic deformation at the Fe2+/3+ impurity site in Fe:LiNbO3 crystals. Phys. Rev. B 2015, 91, 1–14. [Google Scholar] [CrossRef]
- Xu, C.; Zhang, C.L.; Dai, L.; Leng, X.S.; Xu, L.; Xu, Y.H. OH− absorption and nonvolatile holographic storage properties in Mg:Ru:Fe:LiNbO3 crystal as a function of Mg concentration. Chin. Phys. B 2013, 22, 054203. [Google Scholar] [CrossRef]
- Sommerfeldt, R.; Holtmann, L.; Kratzig, E.; Grabmaier, B.C. Influence of Mg Doping and Composition on the Light-Induced Charge Transport in LiNbO3. Phys. Status Solidi A 1988, 106, 89–98. [Google Scholar] [CrossRef]
- Vittadello, L.; Bazzan, M.; Messerschmidt, S.; Imlau, M. Small polaron hopping in Fe:LiNbO3 as a function of temperature and composition. Crystals 2018, 8, 294. [Google Scholar] [CrossRef]
- Vittadello, L.; Bazzan, M.; Aillerie, M. A polaron approach to photorefractivity in Fe:LiNbO3. J. Phys. Commun. 2018, 2, 125003. [Google Scholar] [CrossRef]
- Schirmer, O.F.; Imlau, M.; Merschjann, C.; Schoke, B. Electron small polarons and bipolarons in LiNbO3. J. Phys.-Condens. Mat. 2009, 21, 123201. [Google Scholar] [CrossRef]
Sample Symbol | Fe (wt.%) | Zr (mol%) | V (mol%) |
---|---|---|---|
LN:V,Zr2.0 (LN1) | 0.03 | 2.0 | 0.1 |
LN:V,Zr3.0 (LN2) | 0.03 | 3.0 | 0.1 |
LN:V,Zr4.0 (LN3) | 0.03 | 4.0 | 0.1 |
LN:V,Zr2.0,Fe (LN4) | 2.0 | 0.1 | |
LN:V,Zr3.0,Fe (LN5) | 3.0 | 0.1 | |
LN:V,Zr4.0,Fe (LN6) | 4.0 | 0.1 | |
LN:V,Fe (LN7) | 0.03 | 0.1 | |
LN:V (LN8) | 0.1 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saeed, S.; Liu, H.; Xue, L.; Zheng, D.; Liu, S.; Chen, S.; Kong, Y.; Rupp, R.; Xu, J. Enhancement of Photorefraction in Vanadium-Doped Lithium Niobate through Iron and Zirconium Co-Doping. Materials 2019, 12, 3143. https://doi.org/10.3390/ma12193143
Saeed S, Liu H, Xue L, Zheng D, Liu S, Chen S, Kong Y, Rupp R, Xu J. Enhancement of Photorefraction in Vanadium-Doped Lithium Niobate through Iron and Zirconium Co-Doping. Materials. 2019; 12(19):3143. https://doi.org/10.3390/ma12193143
Chicago/Turabian StyleSaeed, Shahzad, Hongde Liu, Liyun Xue, Dahuai Zheng, Shiguo Liu, Shaolin Chen, Yongfa Kong, Romano Rupp, and Jingjun Xu. 2019. "Enhancement of Photorefraction in Vanadium-Doped Lithium Niobate through Iron and Zirconium Co-Doping" Materials 12, no. 19: 3143. https://doi.org/10.3390/ma12193143
APA StyleSaeed, S., Liu, H., Xue, L., Zheng, D., Liu, S., Chen, S., Kong, Y., Rupp, R., & Xu, J. (2019). Enhancement of Photorefraction in Vanadium-Doped Lithium Niobate through Iron and Zirconium Co-Doping. Materials, 12(19), 3143. https://doi.org/10.3390/ma12193143