Analyzing the Interaction between Two Different Types of Nanoparticles and Serum Albumin
Abstract
:1. Introduction
2. Materials and Methods
2.1. Nanoparticles
2.2. Nanoparticle Characterization
2.3. SDS-PAGE
2.4. FTIR Measurements
3. Results
3.1. Morphological and Physico-Chemical Characterization of NPs
3.2. Protein Adsorbtion on NP Surface
3.3. Influence Triggered by NPs on the Secondary Structure of Proteins
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Nanomaterials Market—Global Trends. Investment Analysis and Future Scope to 2022; Mordor Intelligence: Hyderabad, India, 2017. [Google Scholar]
- Global Nanotechnology Market Analysis & Trends. Industry Forecast to 2027; Accuray Research LLP: Noida, India, 2018. [Google Scholar]
- Inshakova, E.; Inshakov, O. World market for nanomaterials: Structure and trends. MATEC Web Conf. 2017, 129, 02013. [Google Scholar] [CrossRef]
- Nanomaterials Market. Global Opportunity Analysis and Industry Forecast, 2014–2022; Allied Market Research: Philadelphia, PA, USA, 2016. [Google Scholar]
- Barahona, F.; Ojea-Jimenez, I.; Geiss, O.; Gilliland, D.; Barrero-Moreno, J. Multimethod approach for the detection and characterisation of food-grade synthetic amorphous silica nanoparticles. J. Chromatogr. A 2016, 1432, 92–100. [Google Scholar] [CrossRef] [PubMed]
- Dekkers, S.; Krystek, P.; Peters, R.J.; Lankveld, D.P.; Bokkers, B.G.; van Hoeven-Arentzen, P.H.; Bouwmeester, H.; Oomen, A.G. Presence and risks of nanosilica in food products. Nanotoxicology 2011, 5, 393–405. [Google Scholar] [CrossRef] [PubMed]
- Chen, F.; Hableel, G.; Zhao, E.R.; Jokerst, J.V. Multifunctional nanomedicine with silica: Role of silica in nanoparticles for theranostic, imaging, and drug monitoring. J. Colloid Interface Sci. 2018, 521, 261–279. [Google Scholar] [CrossRef] [PubMed]
- Tang, F.; Li, L.; Chen, D. Mesoporous silica nanoparticles: Synthesis, biocompatibility and drug delivery. Adv. Mater. 2012, 24, 1504–1534. [Google Scholar] [CrossRef] [PubMed]
- Azioune, A.; Slimane, A.B.; Hamou, L.A.; Pleuvy, A.; Chehimi, M.M.; Perruchot, C.; Armes, S.P. Synthesis and characterization of active esterfunctionalized polypyrrole-silica nanoparticles: Application to the covalent attachment of proteins. Langmuir 2004, 20, 3350–3356. [Google Scholar] [CrossRef]
- Mahmoudab, W.M.M.; Rastogia, T.; Kümmerer, K. Application of titanium dioxide nanoparticles as a photocatalyst for the removal of micropollutants such as pharmaceuticals from water. Curr. Opin. Green Sustain. Chem. 2017, 6, 1–10. [Google Scholar] [CrossRef]
- Press Release No. 1177. Dioxyde de Titane: L’Additif E171 Sera Interdit Dans les Denrées Alimentaires à Partir du 1er Janvier 2020; Ministry of Ecological Transition and Solidarity and Ministry of Economy and Finance of French Government: Paris, France, 2019.
- Yah, C.S.; Simate, G.S.; Iyuke, S.E. Nanoparticles toxicity and their routes of exposures. Pak. J. Pharm. Sci. 2012, 25, 477–491. [Google Scholar]
- Fullstone, G.; Wood, J.; Holcombe, M.; Battaglia, G. Modelling the transport of nanoparticles under blood flow using an agent-based approach. Sci. Rep. 2015, 5, 10649. [Google Scholar] [CrossRef]
- De La Cruz, G.G.; Rodríguez-Fragoso, P.; Reyes-Esparza, J.; Rodríguez-López, A.; Gómez-Cansino, R.; Rodriguez-Fragoso, L. Interaction of nanoparticles with blood components and associated pathophysiological effects (December 20th 2017). In Unraveling the Safety Profile of Nanoscale Particles and Materials—From Biomedical to Environmental Applications; Gomes, A.C., Sarria, M.P., Eds.; IntechOpen: Rijeka, Croatia, 2018; pp. 37–59. [Google Scholar]
- Mahmoudi, M.; Laurent, S.; Shokrgozar, M.A.; Hosseinkhani, M. Toxicity evaluations of superparamagnetic iron oxide nanoparticles: Cell “vision” versus physicochemical properties of nanoparticles. ACS Nano 2011, 5, 7263–7276. [Google Scholar] [CrossRef]
- Treuel, L.; Docter, D.; Maskos, M.; Stauber, R.H. Protein corona—From molecular adsorption to physiological complexity. Beilstein J. Nanotechnol. 2015, 6, 857–873. [Google Scholar] [CrossRef] [PubMed]
- Singh, Y.P.; Abhishek; Pawar, S.J. Characterization of silica nano-particles synthesized by thermo-mechanical route. Int. J. Adv. Res. Sci. Eng. 2017, 6, 267–272. [Google Scholar]
- Nica, I.C.; Stan, M.S.; Popa, M.; Chifiriuc, M.C.; Lazar, V.; Pircalabioru, G.G.; Dumitrescu, I.; Ignat, M.; Feder, M.; Tanase, L.C.; et al. Interaction of new-developed TiO2-based photocatalytic nanoparticles with pathogenic microorganisms and human dermal and pulmonary fibroblasts. Int. J. Mol. Sci. 2017, 18, 249. [Google Scholar] [CrossRef] [PubMed]
- Lin, S.; Mortimer, M.; Chen, R.; Kakinen, A.; Riviere, J.E.; Thomas, D.P.; Ding, F.; Ke, P.C. NanoEHS beyond toxicity—Focusing on biocorona. Environ. Sci. Nano 2017, 4, 1433–1454. [Google Scholar] [CrossRef] [PubMed]
- Duce, C.; Della Porta, V.; Bramanti, E.; Campanella, B.; Spepi, A.; Tiné, M.R. Loading of halloysite nanotubes with BSA, α-Lac and β-Lg: A Fourier transform infrared spectroscopic and thermogravimetric study. Nanotechnology 2017, 28, 055706. [Google Scholar] [CrossRef] [PubMed]
- Abstiens, K.; Maslanka Figueroa, S.; Gregoritza, M.; Goepferich, A.M. Interaction of functionalized nanoparticles with serum proteins and its impact on colloidal stability and cargo leaching. Soft Matter. 2019, 15, 709–720. [Google Scholar] [CrossRef]
- Stan, M.S.; Cinteza, L.O.; Petrescu, L.; Mernea, M.A.; Calborean, O.; Mihailescu, D.F.; Sima, C.; Dinischiotu, A. Dynamic analysis of the interactions between Si/SiO2 quantum dots and biomolecules for improving applications based on nano-bio interfaces. Sci. Rep. 2018, 8, 5289. [Google Scholar] [CrossRef]
- Wang, M.; Fu, C.; Liu, X.; Lin, Z.; Yang, N.; Yu, S. Probing the mechanism of plasma protein adsorption on Au and Ag nanoparticles with FT-IR spectroscopy. Nanoscale 2015, 7, 15191–15196. [Google Scholar] [CrossRef]
- Barth, A. Infrared spectroscopy of proteins. Biochim. Biophys. Acta 2007, 1767, 1073–1101. [Google Scholar] [CrossRef] [Green Version]
- Tran, T.N.; Pham, T.V.A.; Le, M.L.P.; Nguyen, T.P.T.; Tran, V.M. Synthesis of amorphous silica and sulfonic acid functionalized silica used as reinforced phase for polymer electrolyte membrane. Adv. Nat. Sci. Nanosci. Nanotechnol. 2013, 4, 045007. [Google Scholar] [CrossRef] [Green Version]
- León, A.; Reuquen, P.; Garín, C.; Segura, R.; Vargas, P.; Zapata, P.; Orihuela, P.A. FTIR and Raman Characterization of TiO2 nanoparticles coated with polyethylene glycol as carrier for 2-methoxyestradiol. Appl. Sci. 2017, 7, 49. [Google Scholar] [CrossRef]
- Ishida, K.P.; Griffiths, P.R. Comparison of the amide I/II intensity ratio of solution and solid-state proteins sampled by transmission, attenuated total reflectance, and diffuse reflectance spectrometry. Appl. Spectrosc. 1993, 47, 584–589. [Google Scholar] [CrossRef]
- This Is Nanotechnology—One of the Fastest Growing Markets in the World. Available online: https://gaeu.com/artiklar/this-is-nanotechnology-one-of-the-fastest-growing-markets-in-the-world/ (accessed on 9 September 2019).
- Jeevanandam, J.; Barhoum, A.; Chan, Y.S.; Dufresne, A.; Danquah, M.K. Review on nanoparticles and nanostructured materials: History, sources, toxicity and regulations. Beilstein J. Nanotechnol. 2018, 9, 1050–1074. [Google Scholar] [CrossRef] [PubMed]
- Jafari, S.; Derakhshankhah, H.; Alaei, L.; Fattahi, A.; Varnamkhasti, B.S.; Saboury, A.A. Mesoporous silica nanoparticles for therapeutic/diagnostic applications. Biomed. Pharm. 2019, 109, 1100–1111. [Google Scholar] [CrossRef]
- Reddy, L.H.; Arias, J.L.; Nicolas, J.; Couvreur, P. Magnetic nanoparticles: Design and characterization, toxicity and biocompatibility, pharmaceutical and biomedical applications. Chem. Rev. 2012, 112, 5818–5878. [Google Scholar] [CrossRef]
- Zhang, G.; Yang, Z.; Lu, W.; Zhang, R.; Huang, Q.; Tian, M.; Li, L.; Liang, D.; Li, C. Influence of anchoring ligands and particle size on the colloidal stability and in vivo biodistribution of polyethylene glycol-coated gold nanoparticles in tumor xenografted mice. Biomaterials 2009, 30, 1928–1936. [Google Scholar] [CrossRef] [PubMed]
- Sarparanta, M.; Bimbo, L.M.; Rytkönen, J.; Mäkilä, E.; Laaksonen, T.J.; Laaksonen, P.; Nyman, M.; Salonen, J.; Linder, M.B.; Hirvonen, J.; et al. Intravenous delivery of hydrophobin-functionalized porous silicon nanoparticles: Stability, plasma protein adsorption and biodistribution. Mol. Pharm. 2012, 9, 654–963. [Google Scholar] [CrossRef]
- Fleischer, C.C.; Payne, C.K. Nanoparticle-cell interactions: Molecular structure of the protein corona and cellular outcomes. Acc. Chem. Res. 2014, 47, 2651–2659. [Google Scholar] [CrossRef]
- McKenzie, Z.; Kendall, M.; Mackay, R.M.; Whitwell, H.; Elgy, C.; Ding, P.; Mahajan, S.; Morgan, C.; Griffiths, M.; Clark, H.; et al. Surfactant protein A (SP-A) inhibits agglomeration and macrophage uptake of toxic amine modified nanoparticles. Nanotoxicology 2015, 9, 952–962. [Google Scholar] [CrossRef] [Green Version]
- Kobosa, L.M.; Adamson, S.X.F.; Evans, S.; Gavin, T.P.; Shannahan, J.H. Altered formation of the iron oxide nanoparticle-biocorona due to individual variability and exercise. Environ. Toxicol. Pharm. 2018, 62, 215–226. [Google Scholar] [CrossRef]
- Ma, Z.; Bai, J.; Wang, Y.; Jiang, X. Impact of shape and pore size of mesoporous silica nanoparticles on serum protein adsorption and RBCs hemolysis. ACS Appl. Mater. Interfaces 2014, 6, 2431–2438. [Google Scholar] [CrossRef] [PubMed]
- Allouni, Z.E.; Gjerdet, N.R.; Cimpan, M.R.; Høl, P.J. The effect of blood protein adsorption on cellular uptake of anatase TiO2 nanoparticles. Int. J. Nanomed. 2015, 10, 687–695. [Google Scholar]
- Lord, M.S.; Foss, M.; Besenbacher, F. Influence of nanoscale surface topography on protein adsorption and cellular response. Nano Today 2010, 5, 66–78. [Google Scholar] [CrossRef]
- Kubiak-Ossowska, K.; Tokarczyk, K.; Jachimska, B.; Mulheran, P.A. Bovine serum albumin adsorption at a silica surface explored by simulation and experiment. J. Phys. Chem. B 2017, 121, 3975–3986. [Google Scholar] [CrossRef] [PubMed]
- Givens, B.E.; Diklich, N.D.; Fiegel, J.; Grassian, V.H. Adsorption of bovine serum albumin on silicon dioxide nanoparticles: Impact of pH on nanoparticle-protein interactions. Biointerphases 2017, 12, 02D404. [Google Scholar] [CrossRef] [PubMed]
- Givens, B.E.; Xu, Z.; Fiegel, J.; Grassian, V.H. Bovine serum albumin adsorption on SiO2 and TiO2 nanoparticle surfaces at circumneutral and acidic pH: A tale of two nano-bio surface interactions. J. Colloid Interface Sci. 2017, 493, 334–341. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; Grassian, V.H. Bovine serum albumin adsorption on TiO2 nanoparticle surfaces: Effects of pH and coadsorption of phosphate on protein–surface interactions and protein structure. J. Phys. Chem. C 2017, 121, 21763–21771. [Google Scholar] [CrossRef]
- Márquez, A.; Berger, T.; Feinle, A.; Hüsing, N.; Himly, M.; Duschl, A.; Diwald, O. Bovine serum albumin adsorption on TiO2 colloids: The effect of particle agglomeration and surface composition. Langmuir 2017, 33, 2551–2558. [Google Scholar] [CrossRef]
- Thakur, S.; Hashim, N.; Neogi, S.; Ray, A.K. Size-dependent adsorption and conformational changes induced in bovine serum albumin (BSA) on exposure to titanium dioxide (TiO2) nanoparticles. Sep. Sci. Technol. 2016, 52, 421–434. [Google Scholar] [CrossRef]
Nanoparticles | Hydrodynamic Size (d.nm) | PdI | Zeta Potential (mV) |
---|---|---|---|
SiO2 | 134.4 ± 1.431 | 0.255 ± 0.009 | −24.4 ± 0.929 |
TiO2 | 1307 ± 48.01 | 0.433 ± 0.086 | −12.8 ± 0.643 |
Sample | Central Frequency (cm−1) SiO2 Nanoparticles | Central Frequency (cm−1) TiO2 Nanoparticles | ||||
---|---|---|---|---|---|---|
Amide I | Amide II | SiO2 I | Amide I/ TiO2 I | Amide II | TiO2 II | |
SiO2 NP | – | – | 1078 | – | – | – |
TiO2 NP | – | – | – | 1637.5 | – | 409 |
BSA | 1643 | 1530 | – | 1643 | 1530 | – |
BSA_NP_10’ | 1651 | 1549 | 1074 | 1651 | 1541 | 411 |
BSA_NP_30’ | 1651 | 1543 | 1076 | 1649 | 1539 | 409 |
BSA_NP_60’ | 1651 | 1541 | 1074 | 1649 | 1539 | 409 |
HSA | 1645 | 1531 | – | 1645 | 1531 | – |
HSA_NP_10’ | 1649 | 1548 | 1072 | 1651 | 1541 | 405 |
HSA_NP_30’ | 1649 | 1545 | 1074 | 1651 | 1541 | 409 |
HSA_NP_60’ | 1649 | 1545 | 1072 | 1649 | 1539 | 409 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cristian, R.E.; Mohammad, I.J.; Mernea, M.; Sbarcea, B.G.; Trica, B.; Stan, M.S.; Dinischiotu, A. Analyzing the Interaction between Two Different Types of Nanoparticles and Serum Albumin. Materials 2019, 12, 3183. https://doi.org/10.3390/ma12193183
Cristian RE, Mohammad IJ, Mernea M, Sbarcea BG, Trica B, Stan MS, Dinischiotu A. Analyzing the Interaction between Two Different Types of Nanoparticles and Serum Albumin. Materials. 2019; 12(19):3183. https://doi.org/10.3390/ma12193183
Chicago/Turabian StyleCristian, Roxana E., Israa J. Mohammad, Maria Mernea, Beatrice G. Sbarcea, Bogdan Trica, Miruna S. Stan, and Anca Dinischiotu. 2019. "Analyzing the Interaction between Two Different Types of Nanoparticles and Serum Albumin" Materials 12, no. 19: 3183. https://doi.org/10.3390/ma12193183
APA StyleCristian, R. E., Mohammad, I. J., Mernea, M., Sbarcea, B. G., Trica, B., Stan, M. S., & Dinischiotu, A. (2019). Analyzing the Interaction between Two Different Types of Nanoparticles and Serum Albumin. Materials, 12(19), 3183. https://doi.org/10.3390/ma12193183